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Abstract

Many parallel programs are written in SPMD style, i.e.
by running the same sequential program on all processes.
SPMD programs include synchronization, but it is easy to
write incorrect synchronization patterns. We propose a sys-
tem that verifies a program’s synchronization pattern. We
also propose language features to make the synchroniza-
tion pattern more explicit and easily checked. We have
implemented a prototype of our system for Split-C and suc-
cessfully verified the synchronization structure of realistic
programs.

1 Introduction

Explicitly parallel programming—where the programmer
specifies the parallelism in a computation—is arguably the
most widely used parallel programming paradigm. In ex-
change for a programming model that gives direct control
over performance, programmers must manage the coordi-
nation of parallel processes, a task that is facilitated or
hindered by the programming language. Despite years of
practical experience, there is little research exploring lan-
guage and compiler support for writing explicitly parallel
programs. We propose a static semantics for global synchro-
nization that guarantees an explicitly parallel program has
no global synchronization errors. Our proposal is based on
a formalization of widespread programming practices. We
have proven the soundness of our method and implemented
a prototype system. Experimental evidence gathered from
testing our system on realistic benchmarks supports our hy-
pothesis that the global synchronization structure of realis-
tic programs can be formalized and automatically verified.

Our system was developed in the context of a distributed
memory, shared address space programming language (Split-
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C, an SPMD language developed at Berkeley [13]), but we
found it equally applicable to checking the synchronization
structure of shared memory, shared address space parallel
programs; our method can show the synchronization cor-
rectness of the SPLASH-2 [25] benchmarks. Whether a
similar result holds for pure message passing programs re-
quires further research.!

1.1 Global Synchronization

A simple and popular parallel programming model is SPMD
(for Single Program, Multiple Data). SPMD programs are
explicitly-parallel programs written in sequential languages
extended with communication and synchronization primi-
tives. A typical SPMD skeleton is

work1() ;
barrier;
work2() ;
barrier;
work3 () ;

where a barrier causes a process to block until all other
processes have also reached a barrier. In SPMD execution,
all processes execute a copy of the program independently.
In this example, the barriers serve to guarantee that all
processes finish work1 () before proceeding to work2 (). The
only synchronization is at the barriers—processes execute
workn () asynchronously.

While conceptually simple, the combination of asynchronous
execution and explicit global synchronization introduces sub-
tle issues of program structure and correctness. Figure 1
gives examples illustrating correct and incorrect synchro-
nization patterns. In these examples, different () returns
a different value in every process (causing different branch
decisions in different processes) and workn() is a function
with no synchronization. In all the examples barriers are
executed conditionally; we have observed that almost all
SPMD programs have conditional synchronization.

There are two basic forms of incorrect synchronization. In
Figure 1a, processes execute different numbers of barriers,

!Such programs may not rely on global synchronization to the
same degree as shared address space programs, but standard message
passing libraries such as MPI [20] do include global synchronization
primitives.



if (different()) barrier;
work1(); barrier;

work2() ; _
(a) processes left behind

if (x) barrier else work();

(e) correct if processes agree on x’s value

while (different()) barrier;
work1(); barrier;

work2() ; barrier;

work3 () ;

(b) processes “trapped” in a loop

i <= 0;
while i < 10
(if (1 = 1) barrier;
i<- 1+ 1);
barrier; )
(f) correct loop

if (different()) barrier else broadcast;

(c) conflicting barrier/broadcast

if (different())
(barrier; barrier)
else
(work1(); barrier; work2(); barrier)

(g) if with matching barriers

a <- different();

if (a) barrier; (%)
x <- x + 1;
if (not a) barrier; (%)

(d) correct but not structurally correct

i<-0
if (different())
(while (i < 10) (barrier; i <- 1 + 1))
else
(j <- 1 + 103
while (j < 20) (work1(); barrier; j <- j + 1))

(h) structurally correct but not verifiable

Figure 1: Examples of correct and incorrect synchronization.

causing the program to “hang” when some processes termi-
nate while others wait at a barrier. The same problem
occurs in loops containing barriers if processes execute
differing numbers of iterations (Figure 1b). The second
problem 1is illustrated by Figure 1c, where some processes
execute barrier while others execute broadcast. In SPMD
languages, simultaneously executing different synchroniza-
tion operations causes a runtime error (or, in some imple-
mentations, undefined behavior).

Even correct SPMD synchronization can be subtle. Fig-
ure 1le is correct, provided the value of variable x (which is
replicated, i.e. each process has a variable x local to the pro-
cess) is the same in all processes. This pattern—conditional
synchronization where the program’s design guarantees pro-
cesses make the same branch decisions—is ubiquitous in
SPMD programs. Figure 1f gives a more complex example
illustrating the same point. However, processes in correct
programs need not always make the same branch decisions,
as Figures 1d, g, and h show.

1.2 Synchronization Verification

Figure le shows that an important component of under-
standing synchronization behavior is knowing which repli-
cated variables must have the same value in all processes:
We call such variables single-valued. Replicated variables

with different values in different processes are multi-valued.

Informally, a variable z is single-valued if for every assign-
ment x = e, either e is a constant, a broadcast, or a function
of other single-valued variables. One can show by induc-
tion on the length of program executions that single-valued

variables take on the same sequence of values in all pro-
cesses. A formal definition of single-valued requires more
development (see Section 3.1).

In practice, SPMD programmers use synchronization in a
highly structured way. All SPMD programs we have seen
observe the following notion of synchronization correctness,
which relies on knowing single-valued variables.

Definition 1.1 (Structural Correctness) An expression
is structurally correct if all subexpressions e satisfy the fol-
lowing: Let V be the set of single-valued variables on entry
to e and V' the set of single-valued variables on exit from
e. If processes begin execution of e in environments having
the same value for each variable in V' and all processes ter-
minate (i.e., no process loops), then all processes execute
the same sequence of synchronization operations and end
execution in environments having the same value for each
variable in V’.

It is easy to check that Figure 1f, g, and h are structurally
correct and that Figure le is structurally correct assuming
x is single-valued. Figure 1d is an example without syn-
chronization errors that is not structurally correct (because
of the expressions marked (*)).

1.3 Barrier Inference

We have developed a static semantics that verifies that
a program has structurally correct synchronization. Be-
cause barriers are the most common form of SPMD syn-
chronization, we call this process barrier inference. Stat-



ically checking synchronization behavior guarantees that
programs never fail by “hanging” at barriers or executing
conflicting synchronization operations. SPMD program-
mers do make such mistakes,? and our techniques eliminate
this class of bugs. Equally important, our method makes
explicit the heretofore implicit assumptions about single-
valued variables in SPMD programs. In our experience,
this extra information is extremely useful for understanding
SPMD programs written by others. Barrier inference also
gives the compiler a more precise understanding of the por-
tions of the program that execute in parallel, which makes
SPMD optimizations, e.g. [14], more precise.

There are structurally correct programs our system cannot
verify, such as Figure 1h. Intuitively, the problem with this
example is that although both branches execute the same
number of barriers, our system only infers that the branches
each execute some unknown number of barriers and cannot
tell that these numbers are equal. In contrast, our system
verifies Figure 1g by inferring that both branches execute
two barriers. While we have seen examples similar to Fig-
ure 1g, we have seen no programs with the structure of
Figure 1h.

We present our barrier inference algorithm, which statically
verifies the correctness of an SPMD program’s synchroniza-
tion behavior (Section 3), along with a proof of soundness
(Section 3.1). We propose language features that make the
synchronization structure of SPMD programs explicit (Sec-
tion 4.1). We have implemented a prototype system to val-
idate the algorithm and to empirically study the proposed
language features. We tested the prototype on a substan-
tial number of Split-C programs (Section 5). Experience
with our implementation is positive; the system successfully
checks the benchmarks with a few minor modifications to
the programs, including one to correct a bug detected by our
system. We also examined the Splash-2 benchmarks [25] by
hand and found that all but one can be checked with our
system (Section 5.2). These experiments were for medium-
size programs; we believe that static verification of synchro-
nization is especially important for larger systems because
these are not amenable to manual verification, and also for
higher-order languages (e.g. parallel object-oriented lan-
guages) where control-flow is less explicit.

2 The Language

We present our system using £, a small procedural lan-
guage extended with three parallel operations: barrier,
broadcast (which is like barrier except a distinguished
value is sent to all processes), and communicate (which al-
lows asynchronous communication). As our interest is in
synchronization operations such as barrier and broadcast,
we leave the semantics of communicate unspecified. The
grammar for L is:

Expr == i
| id
|  barrier

2It is difficult to provide direct evidence for this claim, but we
have committed such programming mistakes ourselves and found
them in existing, presumably debugged, programs.

broadcast
communicate
id(Expr,...,Expr)

id < Expr

if Expr Expr else Expr
Expr; Expr

let id in Expr

letrec id(id,..., id) = Expr in Expr

Values in £ are integers and all variables are replicated. A
let introduces a new variable and a letrec introduces a po-
tentially recursive function definition; the other expressions
are also standard. There are some predefined functions,
such as +, which are mathematical functions, i.e. their re-
sult depends solely on their arguments. In examples we
write while e; e, as shorthand for

letrec £f() = if e; (er; £()) else 0 in £()

This spare language is sufficient to illustrate the novel as-
pects of our techniques. In Section 4.2 we discuss extensions
to the C- and FORTRAN-based languages used in prac-
tice. Figure 2 gives a simple, CPS-inspired state-transition
semantics for £. The computation of one process is a se-
quence of steps:

State ~+ State

where a state FunEnv x Env X Cont X Expr consists of an ex-
pression e to be evaluated, environments for the variables
and function names in scope at e, and the computation to
perform after evaluating e (a continuation). Termination
is indicated by returning a special state without a contin-
uation or a function environment. Readers familiar with
CPS semantics will note that this CPS semantics is non-
standard, because a continuation is a function returning
only the next state in the computation, rather than the fi-
nal answer of the entire computation. This modification
exposes intermediate states of the computation, which is
needed to define the semantics of barrier and broadcast.

The semantics of £ model synchronization structure, but
not the details of the communication primitives. The syn-
chronization primitives, barrier and broadcast, are the
only operations requiring global interaction. For barrier,
once all processes reach a barrier each process proceeds
with its continuation. The rule for broadcast is identical.
The values returned by the communication operations are
predicted by an oracle() function. The only place where
the communicated value is important is in broadcast: it re-
turns the same value in all processes, but the actual value is
not important for synchronization verification. The barrier
operation does not communicate any values, so its result is
always 0 (an arbitrary choice).

For simplicity, we assume variables and functions are given
unique names (i.e., no names hide names in outer scopes).
This property can be enforced by renaming variables.

The semantics of Figure 2 uses a few operations: FF(f) is
the set of function names in scope at f’s definition; FV(f)
is the set of identifiers (other than f’s formal parameters) in
scope at f’s definition. The set dom(E) is the domain of E.



FunEnv = FunctionName — FunctionDefinition

Env = Var > N

Cont = Env x A — State

State = FunEnv x Env X Cont X Expression+ Env X N

Qo

(F,E,C,i) ~ C (E,1)
(F,E,C,z) ~ C (E,E(z))
(F, E,C,communicate) ~» C (E,oracle())
(F,E,Cy, f(Ezpri,..., Ezpry)) ~ (F,E,Cy, Ezpri) where
F(f)= f(z1,...,2n) = Ezpr
Cl = )\EQ,Ul.(F, E27027E$pr2>
Cno1 = AEn, vn_1.{F, En,Cy, Expry,)
Cr, = AEny1,00(F| FF(f), Eo,C', Expr)
Eo = (En+1|FV(f))[$1 — VUly...,Tp & Un]
C' = AE' v.Co (Ent1//FV(f)+ E'//{z1,...,2:}),v)
(F,E,Co,p(Ezxpri,..., Ezpry)) ~ (F,E,Cy, Ezpri) where
p 1s a primitive

Cl = )\EQ,Ul.(F, EQ,CQ,ECL‘]DT2>

Cno1 = AEn, vn_1.(F, En,Cr, Expry)
Cn = AEn+1,Un.Co(En+1,p(Ul, . .,’Un))

(F,E,C,2 < Exzpr) ~+ (F,E, AE',v.C (E'[z < v],v), Expr)

(F,E,C,if Ezpry Ezpr; else Exprs) ~+ (F,E,Co, Expri) where
Co = AE',v(F,E',C, if v =0 then Exprs else Exprs)

(F,E,C, Expri; Ezpra) ~+ (F,E, AE' v.(F,E',C, Ezprs), Expri)
(F,E,C,let z in Expr) ~» (F,E[z < 0], AE',v.C (E'//{z},v), Ezpr)

(F,E, C,letrec f(z1,...,xn) = Expri in Exprs) ~ (F[f < f(z1,...,22) = Expr1], E, C, Exprs)
FF(f)=dom(F), FV(f)=dom(E)

[(F1,E1, C1, barrier), ... (Fyn, En, Cn, barrier)] ~ [C1 (E1,0),...,Cpn (En,0)]

[(F1, E1, C1, broadcast),...,{Fn, En, Cy, broadcast)] ~+ [Cy (E1,v),...,Cn (En,v)] where v = oracle()

Figure 2: Semantics for L.



The environment FE|V is E with the domain restricted to
variables V. The environment F//V is F with variables V'
removed; i.e., E|(dom(E) — V). The environment E; + E
is the combination of two environments F; and F> with
disjoint domains.

The result of a (terminating) sequence of states is an en-
vironment recording the final state and an integer result.
The computation of n processes executing in parallel is a
sequence of steps:

State" ~+ State"

The transitions for vectors of states include the synchro-
nization rules for barrier and broadcast, plus a general
rule for interleaving the transitions of individual processes:

[S1,...,Si—1,51,Si+1,..-Sn] ~* [S1,...,Si—1, 5%, Sit1,...Sn]

7
whenever S; ~ 8.

Let I be the initial continuation AE, v.(E,v). The evalua-
tion of expression e on n processors is

[(Q),{pid:lj7 I, e),...,{(0,{pid=n}, I, &)]
~ [(E1,11)y- ., (Fn,in)]

The initial environment of each process contains a process
id in the variable pid. This value distinguishes one process
from another.

If all processes halt with a final environment and integer
value then that run is successful. A run is unsuccessful if
(1) processes execute a different number of barriers (Fig-
ures la and 1b), (2) some processes reach a barrier at
the same time others reach a broadcast (Figure 1c), or (3)
one or more processes loop. Our methods are capable of
statically checking realistic programs for (1) and (2).

3 Barrier Inference

Barrier Inference is an example of an effect system [7]. An
effect associated with each expression models two aspects
of SPMD computation. The first aspect is the sequence
of barriers and broadcasts executed in evaluating an ex-
pression e. The rules associate an abstract synchronization
sequence with e:

S={L fru{e,r}’

A sequence value s € {b,r}" means every process executes
exactly the sequence s of barriers (b) and broadcasts (r).
A sequence value f (for fired), means every process executes
the same unknown sequence of barriers and broadcasts.
The sequence value 1 means no process executes the expres-
sion. An element of S can be assigned to every structurally
correct expression. There is an ordering on synchronization
sequences:

1<s=f for any s € {b,r}"

The second aspect of an expression’s effect tracks single-
valued variables. An abstract environment AEnv: Vars —

{+, —} is a mapping from program variables to + (indicat-
ing a variable is single-valued) or — (indicating a variable
may be multi-valued). There is an ordering + < —.

Analogous to an abstract environment there is an abstract
function environment, which is a mapping

FEnv: FunctionNames — {4, —}"xAEnvx{+,—}xAEnvxS

from function names to function signatures.

Definition 3.1 A function f satisfies a signature written

(as,...,an),A > a4’ s
if the following hold: f has n arguments and its free vari-
ables are those in dom(A) = dom(A’); processes beginning
execution of f in states agreeing on values of the single-
valued function arguments in (2117 e an) and single-valued
variables in A either diverge or (1) agree on the result if
a = +, (2) agree on the value of every single-valued variable
in &', and (3) have executed the same sequence of synchro-
nization operations s.

For example, the signature
f : (+7_)7®_> +7®76
says that f(a,b) = f(a,c) for all b and ¢ (provided both

evaluations terminate) and f executes no synchronization
operations. The inference system proves statements of the
form

B, AFExpr:a, A, s

which is read: Given functions matching abstract function
environment B, if all processes begin the execution of Expr
with the same values for variables marked single-valued in
A, then all processes that terminate (1) agree on the val-
ues of variables marked single-valued in A’, (2) agree on
the result if a = +, and (3) have executed the same se-
quence of synchronization operations g. Thus, any such
proof shows e’s structural correctness (Definition 1.1). The
synchronization sequence s depends on information about
single-valued variables and expressions, but not vice-versa.
We find it most convenient to express both components in
one set of rules.

The inference rules are in Figure 3. The remainder of this
section discusses the rules, presents a soundness result, and
illustrates barrier inference with examples. The [Int] rule
is simple; evaluating an integer is single-valued (all pro-
cesses compute the same integer), does not affect the set of
single-valued variables, and executes no synchronization op-
erations. The [Id] rule is similar; the result is single-valued
only if all processes have the same value for the identi-
fier in the environment. A communicate is assumed to be
multi-valued, as processes may receive different values.® A
barrier and a broadcast are always single-valued and each
executes a single synchronization operation. The [Prim]

3When a process needs to communicate a value to all processes,
broadcast is more efficient than n communicate operations, and makes
explicit that the result is single-valued. Our experience with the
Split-C programs of Section 5 shows that this rule is nearly univer-
sally followed.



B, Abi:+, A, €

B, AFid: A(id), A, €

B, At communicate: —, A, ¢

B, AFbarrier : +, A, b

B, At broadcast : +, A, r
B, Ao+ Ezpri:ai, A1, s1

B, A1+ Exzpry @ an, An, sn
B(f)=(al,...,an),A—a,A' s
Anldom(A) = A

V1<i<n.a; <d

B, Ao & f(Ezpry,...,Ezpry): a, An//dom(Al)—|—A/7 $S1D...PDsnPs
B, Aok Expri a1, A1, s1

é,. An_1 F Expry, :apn, An, $n
B, Aok p(Ezpri,...,Ezpra):aiU...Uan, An, 19 ...P sn

B, AvF Ezpr:a, A, s
B, A5 « Ezpr:a, A'lz < a], s

B, Alz « +]F Ezpr :a, A, s
B, AkFlet z in Expr:a, A'//{z}, s

dom(A) = dom(A") = dom(Ap)
S=(ai,...,an),A—>a,A' s

A =A"/H{z1,..., 20}

B[f « S|, Alz1 < a1,...,7n < an|F Expry ta, A", s
B[f « S], Ao F Exprs : a3, Az, s3

B, Ag & letrec f(x1,...,2n) = Expri in Exprs : a3, Az, so

B, Aok Ezpri i+, A1, $1
B, A1 F Exprsy a2, Az, s2
B, A1 F Exprs :as, As, s3
B, Ao b if Ezpry Ezpry else Exprs : az Uas, Az U As, s1 & (s2 U s3)

B, Aok Expri : —, A1, s1
B, A1k Exprs a2, Az, $2
B, A1+ Exprs :as, As, s3
So L ss < f
A" = Ay « (AV(Ezpra) U AV(Exprs))
B, Aot if Expri Ezpry else Exprs : —, A', s1 & (s2 U s3)

B, Aok Expri a1, A1, s1
B, A1 v Ezpra :az, Az, $2
B, Ao F Expri; Exzpra :az, Az, s1 @ s2

Figure 3: Inference rules.

[Int]
i

[Comm]
[Barrier]

[Broadcast]

[Fun]

[Prim]

[Assign]

[Let]

[LetRec]

[If-Single]

[1f-Multi]

[Sequence]



rule says that primitive, side-effect-free functions are single-
valued if all their arguments are single-valued.

In rule [Fun], actual parameters must be single-valued wher-
ever the function signature requires single-valued arguments
(the comparisons a; =< ai). Similarly, the environment
of the call must be single-valued in all variables the sig-
nature requires be single-valued. We define A; < A if
dom(A:) = dom(Az) and for all z € dom(A;) we have

The conclusion of [Fun] and several of the other rules com-
bine synchronization sequences. The sequence s; @ sz is the
best description of s; followed by s3:

s1-82 if 81,82 € {b,r}"
51@822 J_ ifslzJ_VSQZJ_

s1 L sy otherwise

where s; - $2 1s the concatenation of strings s1 and s2. The
operator & is monotonic in both arguments.

Note the difference between the treatment of primitive and
user-defined functions. The result of a primitive function
is single-valued if all its arguments are single-valued, which
is a kind of subtyping rule. Thus, some uses of a primi-
tive function can be single-valued and others not. All calls
to a user-defined function are either single-valued or not,
depending on the function’s signature in the abstract func-
tion environment. This distinction is necessary, because
user-defined functions may modify single-valued state: If a
function were sometimes called with arguments not match-
ing its signature, the function might set single-valued state
to a non-single value. We have not found this restriction
on user-defined functions to be a problem in practice (see
Section 5.1).

The [Assign] rule updates the environment based on the
new value of the assigned variable; this reflects the fact that
a variable can be single-valued at some program points and
not at others. The [Let] rule introduces a new variable,
which is initially single-valued as it is initialized to 0 in all
processes. A new function is introduced into the function
environment by the [LetRec] rule. This rule, and the [Fun]
rule, express constraints on the function’s signature; in [6]
we outline an implementation that finds a solution to these
constraints by fixed-point iteration.

The two rules for if are interesting. The rule [If-Single]
applies when the predicate is single-valued. All processes
take the same branch, but we do not know which branch.
In this case a conservative upper bound over the results of
both branches suffices.

The rule [If-Multi] applies when the predicate is multi-
valued. The upper-bound of the synchronization sequence
of the branches must be a known (not f) sequence. A subtle
point is determining the single-valued variables of the final
environment. Any variable modified in either branch could
have different values in different processes on exit from the
conditional; all such variables must be marked multi-valued
in the final environment. It is easy to compute AV(e), the
set of variables visible at e that may be assigned in the eval-
uation of e (including via function calls in e). Now define
Aa{vi,...,vn} as Alvr & —,...,un & —].

If the inference system of Figure 3 cannot assign any syn-
chronization value to an expression, then evaluating the ex-
pression may cause processes to execute differing numbers
of barriers and broadcasts—the program may get “out of
synch.” In this case the program is rejected. Of course,
the inference system is conservative and may reject correct
programs. We show in Section 5.1 that the system works
well on realistic benchmarks.

3.1 Soundness

A sticky point in proving our system correct is capturing
the meaning of single-valued variables. Intuitively, a vari-
able is single-valued if all processors have the same value for
the variable at the same time. However, “at the same time”
is a slippery notion in a setting with asynchronous execu-
tion. Only at global synchronization points (i.e., barriers,
broadcasts, and the start and end of execution) is it possi-
ble to assert anything useful about the state of all processes.

The key to this problem is to observe that the values of
single-valued variables depend only on other single-valued
expressions. Using this fact, it can be shown (without refer-
ring to time except within a single process) that if processes
begin execution agreeing on single-valued inputs, then they
terminate agreeing on the single-valued outputs.

The proof of soundness has two steps. First, we prove
single-valued outputs are determined solely by single-valued
inputs for a process in isolation. Second, we show that if
the inference rules can derive any proof for an expression,
then all processes evaluating that expression execute the
same sequence of synchronization operations.

A few definitions are required. Environments F; and F»
are equal with respect to an abstract environment A, writ-
ten Ey ~a Ea, if dom(E,) = dom(E:) = dom(A) and
Vz.A(z) = + = Ei(z) = Ea(z). A function environment
F' and an abstract function environment B are compatible,

written F' : B, if dom(F) = dom(B) and for all f € dom(F):

F(f)= f(z1,...,2z0) = Ezxpr
B(f)=(a1,...,an), A = a,A'}s
BIFF(f),Alz1 < a1,...,5n < an]F Ezpr 1 a, A" s
A'=A"[{z1,... 20}

An execution state; f\} state, is an execution with syn-
chronization sequence t, where t is a string with one b
for each barrier and one r for each broadcast executed.
The broadcast sequence of an evaluation [Si,...,Sx] 2
[S1,...,S,] is the sequence of values returned by succes-
sive calls to broadcast during this evaluation.

Lemma 3.2 Let e be any expression and let B, A F e :
a,A',s. Let By ma Fy, and F : B. If

[Ci(E1,11)]
[02(E£’ 12)]

[<F7E1701,6>] ~r
[<F7E2702,6>] ~r

and the broadcast sequences of both evaluations are iden-
tical, then the following are all true:
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Theorem 3.3 Let e be any expression and let B, A F e :
a,A')s. Let F': Band F; ~4 E; for i,5 = 1..n. Then

(F,Er, 1,€),....,(F En, I,e)] 5 [(Ef,v1),...,(EnL, vn)]

or some process diverges.

The proofs of Lemma 3.2 and Theorem 3.3 are given in [6].

The semantics of Figure 2 does not handle synchronization
errors, i.e. the cases where barriers and broadcasts are
mismatched or when some processes waits at a barrier
while other processes have terminated. In those cases, the
evaluation hangs. Theorem 3.3 shows that this cannot oc-
cur with barrier inference: either the program terminates,
or the evaluation sequence is infinite.

3.2 Examples

We present example applications of the inference rules to
Figures 1a and le. Other examples are included in Ap-
pendix A for the interested reader. The functions work ()
and different () do not contain barriers or modify visible
variables.

Figure 1a fails the [If-Multi] rule - the alternatives of the
if have different synchronization sequences.

0,0 F different(): —, 0, ¢
0,0 F barrier:+, 0, b
0,0F0:+, 0, €
bue = f A f The rule fails.
0,0 F if different() barrier else 0:?

[1f-Multi]

Figure le successfully passes the inference rules, assuming
x is single-valued:

O, {x:4+}Fx:4, {x:4}, €
0,{x:+} Fbarrier: +, {x:+}, b
0,{x:4+} Fwork(): —, {x:+}, ¢ [If-Single]
0,{x:+}F if (x) barrier else work() :
—{x:+}Led(bUe)=f

4 Realistic Languages

We now turn to the use of our techniques in realistic pro-
gramming languages. Section 4.1 presents features we be-
lieve every SPMD language design should include. Sec-
tion 4.2 discusses modifications needed to incorporate our
techniques in programs written in C- or FORTRAN-based
languages.

41 SPMD Language Design

Current SPMD languages have few ways of indicating the
synchronization structure of an application. Even with bar-
rier inference, this makes SPMD programs unnecessarily
difficult to read and maintain. We propose two language
features that make synchronization structure more explicit:
named barriers and a single keyword to declare single-
valued variables and functions.

Some SPMD languages provide named barriers, with the
semantics that a runtime error results if processes simulta-
neously execute barriers with different names. Using named
barriers indicates which syntactic barriers may participate
in a synchronization. Named barriers also make the differ-
ence between [If-Multi] and [If-Single] explicit: an [I[f-Multi]
must use the same barrier names in both branches, while
an [If-Single] may use different names. Usually named bar-
riers are implemented using a broadcast (so the names can
be compared) which is much slower than special-purpose
barrier hardware (e.g., on the CM5 [17] and T3D [4]). But
L already effectively has two barrier names: barrier and
broadcast. Adding more names increases the alphabet
of synchronization strings but has no impact on inference
complexity. Our system thus allows named barriers to be
checked at compile-time, allowing their implementation with
more efficient anonymous barriers. In a language with bar-
rier inference there are only advantages to using named
barriers.

Our inference system makes clear that knowing the single-
valued variables is crucial to understanding an SPMD pro-
gram’s synchronization structure. We believe programmers
should declare single-valued variables, formal parameters,
and function results. These declarations are checked by a
revised inference system. We propose a keyword single
used as a type modifier (e.g., single int x;). The modi-
fications to the language are:

Expr o= ...

| let Decl in Expr

| letrec Decl(Decl,...,Decl)=Expr in Expr
Decl == id

| single id

Declaring single-valuedness has two advantages. First, the
program is clearer as the common parts of the data-flow are
explicit. Second, barrier inference is simplified. Because ab-
stract environments can be built from single declarations
rather than computed, proofs

B, AFExpr:a, s
no longer need a result environment. Function signatures
(a1,...,an) = a,s

do not include environments and can be built from the dec-
larations. Figure 4 shows the new inference rules.



[Int]

B, AFid: A(id), < [1d]

B, At communicate : —, € [Comm]

B, AF barrier : +, b [Barrier]
B, Ak broadcast x : +, r [Broadcast]
B, A+ Expri : a1, s1
B, At Expry, : an, Sn .
B(f) = (a,...,an) > a,s [Fun]
Vi<i<n.a <aj

B, AF f(Ezpri,...,Exprp):a, s19...8s,Ds
B, AF Ezpri tai, s
B, AF Exzpry : an, sn [Prim]

B, Arp(Fzpri,...,Ezpry) a1 U...Uap, $16...0 sy

B, AF Expr:a, s
a3 Alx) [Assign]
, Az« Expr :a, s

B

B, Az < a]F Ezpr:d’, s

Let
B,Al—letaxinEa:pr:a',s [Let]
SZ(al,...,am)—>a07s
Blf « S|, Alz1 < a1,...,&m < am] - Expry tag, s
B[f < S],AF Expry tab, sz [LetRec]
B, AFletrec ao f(a1 #1,...,am ©m) = Expri in Exprs : ay, s2

B, AF Ezpri : 4, s1

B, AF Exprs :az, sz )

B, AF Ezprs :as, ss3 [If-Single]
B, Avif Expry Exprs else Ezprs : az Uas, s1 @ (s2 U ss)

B, Ar Expr1: —, &1
B, AF Expry :az, sz
B, AF Ezprs : as, ss3
So L s3 < f
V. A(z) =+ = = € (AV(Ezprz) U AV (Ezprs))
B, Avif Expry Exprs else Ezprs : —, s1 @ (s2 U s3)

[1£-Multi]

B, AF Ezxzpri a1, s1
B, AF Ezprs : az, s2 [Sequence]
B, AF Ezpri; Ezpry taz, s1 @ s2

Figure 4: Inference rules with a single keyword.



4.2 Application to Existing Languages

Some features of C and FORTRAN, which are popular
starting points for SPMD languages, complicate barrier in-
ference. Unstructured control-flow, aliasing, function point-
ers, and unitialized data structures are problematic.

The inference of single-valued variables is very similar to the
problem of binding-time analysis in partial evaluation [12]:
Given a set of variables whose value is assumed known (or
single-valued in our case), determine which expressions and
variables have a value that depends solely on these vari-
ables. Algorithms for binding-time analysis for C, such
as [1], handle unstructured control-flow and can be modi-
fied to compute single-valued variables and synchronization
sequences.

In the presence of pointers, detecting single-valued vari-
ables can require alias analysis, a well-known hard prob-
lem [15]. We have found very conservative assumptions suf-
fice in practice (see Section 5.1): a variable whose address
is taken is multi-valued; any pointer dereference is multi-
valued. Similar problems arise with function pointers, so we
require that functions whose address is computed have syn-
chronization sequence € and that all visible variables they
assign are multi-valued.

When a data structure is initialized with a single-valued
expression at creation, it remains single-valued so long as
all modifications are single-valued. Without initialization,
detecting when all elements of a data structure are single-
valued is much harder. We mark uninitialized data struc-
tures as multi-valued.

In practice we have found pointers and complex data struc-

tures rarely used in conjunction with synchronization. There
are a few exceptions; in particular, in C programs command-
line arguments are single-valued pointers and strings in

argv. Many programs parse argv to initialize some single-

valued variables. For these situations a mechanism is needed
for the programmer to assert a particular expression is single-
valued. In the tradition of C, we call this a single-valued
cast. Use of this feature should of course be minimized.

5 Experiments

We implemented a prototype of our inference system for
Split-C [5], an explicitly parallel extension to C. We tested
our prototype on Split-C kernels and applications. The
empirical question we sought to answer is: How well does
barrier inference integrate with real SPMD programming?
Our measure is the number of changes preexisting programs
required to conform to our system. The results were promis-
ing: the checks were all successful with minor changes, ex-
cept for the exception handling aspects of one application.
We also hand-examined the Splash-2 benchmarks and found
that all but one would be checkable with our approach.

5.1 Split-C Prototype

For our purposes, the important features of Split-C are the
barrier () and all_bcast () functions, which correspond to

the barrier and broadcast primitives of L.

The prototype combines a pure inference system with the
language extensions of Section 4.1: It relies on a specifi-
cation of the signatures of functions and a list of single-
valued global variables, but it infers the single-valued local
variables. It verifies all specifications are correct.

Our implementation follows the guidelines of Section 4.2 for
supporting C, except we have not implemented the analy-
sis of data structures (which was only needed by one of
the Split-C programs). The algorithm for inferring single-
valued variables is similar to [1], but includes synchroniza-
tion sequence analysis.

Table 5.1 presents the programs and summarizes our re-
sults. The second column counts the static occurrences of
barriers in the program, while the third column reports the
number of branches that control the execution of a barrier
and whose condition is single-valued. The function signa-
ture and single-valued globals columns report the number
of annotations necessary to check the program. The cases
that required modifications to the code are summarized in
the ‘single-valued casts’ and ‘other changes’ columns. Ex-
cept for ‘svd’, all the casts are for values computed by
parsing program arguments (see Section 4.2). The ‘svd’
algorithm uses single-valued arrays (not supported by our
prototype) which accounts for 18 of the 19 casts. The last
cast arises from a single-valued result returned by reference,
which implies taking the address of a variable. Our system
assumes that any variable whose address is taken is not
single-valued.

The ‘barnes’ application includes exception handling (via
setjmp), which is unchecked by our system.? This applica-
tion also required one small, local change: It broadcasts val-
ues without using the Split-C broadcast primitives; we re-
placed this code with explicit broadcasts. One-line changes
were needed in three programs, ‘mm’, ‘wator’ and ‘nbody’
to avoid taking the address of single-valued variables read
with scanf. The second change in ‘nbody’ corrected a mi-
nor bug detected by our prototype: when unexpected ar-
guments were supplied only some processes exited.

These results show that our system successful verifies ex-
isting Split-C applications, with few changes and annota-
tions. All but one of the programs depend on single-valued
branches, which implies that conditional synchronization is
the rule and not the exception in SPMD programs, and
therefore that analysis of single-valued variables is neces-
sary. The analysis time is low enough that our system can
be integrated into an existing compiler without significant
cost. The times, measured on a Sun Ultra-1/167Mhz, rep-
resent the time spent in our system and do not include the
time to build the standard SSA representation used by our
prototype.

5.2 The SPLASH-2 Benchmarks

As a further validation of our approach, we examined the
synchronization structure of the SPLASH-2 benchmarks [25],

4Checking use of setjmp and longjmp in C is almost impossible in
any program analysis. In ‘barnes’, when an exception arises in one
process, the whole program is terminated.



Program | Lines | Number of | Single-valued | Function | Single-valued | Single-valued | Other | Analysis
barriers branches signatures globals casts changes time
cannon 501 17 1 1 - - - 0.14s
cg 453 18 2 3 - - - 0.05s
cholesky | 1542 38 16 4 - 2 - 1.06s
column 651 7 3 1 - - - 0.04s
fft3d 1181 12 5 1 - 1 - 0.05s
mm 508 23 1 1 - - 1 0.07s
radix 379 7 3 - - 2 - 0.06s
sample 302 9 0 - - - - 0.06s
svd 1395 1 23 13 9 19 (or 1)° - 0.12s
wator 348 10 5 - 3 - 2 0.04s
nbody 546 7 6 - 2 3 2 0.09s
em3d 1080 16 1 - - - - 0.11s
barnes 2804 73 17 2 6 7 2 0.32s

418 of the 19 casts are required because of the lack of support for single-valued arrays.

Kernels:
- column, sample, radix: Sorting programs.

- cannon: Matrix multiplication using Cannon’s algorithm.

- cg: Conjugent-gradient based equation solver.

- cholesky: 7 implementations of Cholesky decomposition.
- fit3d: A 3-dimensional fast fourier transform.

- mm: Matrix-multiply, blocked or unblocked.

- svd: Lanczos algorithm for singular-value decomposition.

Applications:

- wator: Simulation of particle-like fish under current.

- nbody: A simple n body simulation code.

- em3d: 3-dimensional electro-magnetic simulation.

- barnes: Simulate the interaction of a system of n bodies
using the Barnes-Hut hierarchical method.

Table 1: Results of checking Split-C programs.

which are written in C extended with macros for writing
parallel programs. The facilities provided by the macros
include named barrier synchronization. Process manage-
ment is with a fork/join model, but all but one program
is written in SPMD style with all processes executing the
same code. The exception is ‘radiosity’; as it is outside our
model we cannot check it.

Our implementation is written for Split-C and therefore
does not check the SPLASH-2 programs. We examined the
SPLLASH-2 programs by hand to see if a suitably modified
system would check these programs. The results of this
examination are in Table 2. The four kernels and all but
one of the applications pose no particular problems for our
system.

6 Related Work

There are two strands of related work: SIMD (Single In-
struction, Multiple Data) languages and synchronization
analysis.

SIMD Languages divide variables into control unit and pro-
cessing unit variables. Control unit variables resemble our
single-valued variables: they are variables that have only
one value. Unlike single-valued variables, control unit vari-
ables are stored in only one location. Control unit variables
are declared with a CU keyword in the [lliac [V programming
language Glypnir [16]. The Connection Machine language
C* [23] calls these variables scalar. There is no equivalent of
our inference system for these languages, as the properties
we are inferring are guaranteed by SIMD semantics. Our
proposed single keyword provides similar advantages for

Program Lines | Number of Checkable ?
(*: kernel) barriers
ocean 2954 19 ves, needs single-
4703 20 valued arrays
(both versions)
barnes 2078 6 yes
fmm 3800 13 yes
radiosity 11319 5 no, not SPMD
raytrace 10020 1 yes
water 1744 9 yes
2971 9 (both versions)
volrend 3704 13 yes
cholesky™ 5050 4 yes
™ 1005 7 yes
lu* 988 5 yes
763 5 (both versions)
radix* 879 7 yes

Table 2: Results of examining the SPLASH-2 benchmarks.

SPMD languages.
The ELP language [21, 24], a joint SIMD/SPMD program-

ming language where both “modes” have the same seman-
tics, allows declaration of single-valued variables with a
mono keyword. When in SPMD mode the compiler guaran-
tees that the single-valued property is preserved, presum-
ably using rules similar to ours (the paper does not give
many details on the checking strategy). ELP does not in-
clude explicit barriers or language-level broadcast, so there
is no equivalent to our verification of synchronization. The



programming model is also very different.

Analysis of the synchronization of parallel programs has
been extensively studied for the purposes of deadlock and
data-race detection as well as for optimization. Our survey
of this work is necessarily partial, and covers only static
techniques.

Jeremiassen and Eggers [11] analyse barrier synchroniza-
tion for SPMD programs to improve the precision of opti-
mization. They do not attempt to verify synchronization
correctness. Their analysis relies on named barriers for pre-
cision and does not consider single-valued variables, though
they do consider dependencies on multi-valued constants
like pid [10].

A number of papers analyse 2-way synchronization, such
as post/wait or Ada’s accept/call mechanism, between ex-
plicitly specified tasks. As each task is specified with dif-
ferent code, there is no analogue of single-valued variables.
Analyzing synchronization in this context is similar to an-
alyzing the synchronization between the two branches in
the [If-Multi] case, for which we only allow very simple syn-
chronization sequences. None of the many papers on this
subject present exact solutions for more general situations
[2, 3,9, 18, 19, 22, 26].

7 Conclusion

We have identified an important property of SPMD pro-
grams that current languages do not explicitly support: The
portion of control and data flow governing global synchro-
nization that is identical across all processes. This syn-
chronization kernel structures the entire application. We
have developed an inference system that both detects this
structure and verifies that global synchronization is correct.
An implementation of this system for Split-C successfully
checks a number of programs.

The synchronization kernel is sufficiently important that
it should be explicitly visible in source code. We propose
language features that make SPMD programs clearer and
easier to check.

We are integrating these language extensions into Tita-
nium, a Java-based [8] successor to Split-C. This requires
extending the application of the single-valued concept to
more complex data structures, including references and ob-
jects, and to support language features such as exception
handling.
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A Examples

This appendix shows the results produced by our inference
system on the more complex examples from Figure 1. The
while loops of Figures 1b and 1le are rewritten using letrec
so that we can directly apply the rules in Figure 3. Figure 5

shows the new code.

letrec wi() =

in w1();

if (different())
(barrier; w1())
else
0

work1(); barrier();
work2 () ; barrier();

work3 () ;
Example (b)
i<- 0;
letrec w2() = if (i < 10)
(if (i = 1) barrier;

i<-1i+ 1;
w2())
else
0
in w2();
barrier;

Example (f)

Figure 5: Loops rewritten with letrec.

e Figure 1b fails [[f-Multi]. We end up trying to match
{w1:(),0 = +,0, L},0F different () : —, 0, €
{w1:(),0 = +,0, L},0F (barrier; wi()): 4+, 0, b
{w1:(),0—=+,0,L},0F0:4, 0, ¢
bUe= f A f The rule fails.

b if (different()) (barrier; wi()) else 0:7?

e Figure 1f succeeds with this signature for w2:

O (i 4) =+ (i:4), /.
e Figure 1g successfully passes [If-Multi]
b different () : —, 0, €
b (barrier; barrier): +, 0, bb
F  (work1(); barrier; work2();
barrier) : +, 0, bb
bbUbb =bb < f
Fif (different()) (...) else (...):—,0,bb
e Figure 1h fails because both branches have abstract syn-

chronization sequence f

b different(): —, 0, €

F (while ...):+, 0, f
F(G=1+10; ...):+, 0, f

. [If-Multi]
fuf=fA4f The rule fails.

Fif (different()) (...)

else (...):?



