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Abstract—We introduce Emerson, a scripting language for
virtual worlds that are seamless, scalable, and federated. These
worlds present a number of unique challenges. Most importantly,
scripts that specify the behavior of the world are distributed
across many hosts and users may generate and host scripts.
These constraints imply features not common in other systems,
such as frequent use of asynchronous message passing for basic
interaction between entities, a lack of trust between entities
inhabiting the world, and live-editing of entities in the world.
Emerson addresses these challenges with three core design
concepts: entity-based isolation and concurrency, an event driven
model with concise and expressive pattern matching to find
handlers for messages, and strong support for example-based
programming within the live virtual environment. Our prototype
implementation of Emerson, based on the V8 JavaScript engine,
demonstrates that a variety of applications can be easily written
in Emerson in a live system.

I. INTRODUCTION

“Build, therefore, your own world.”
- RALPH WALDO EMERSON
Nature

Many users of today’s virtual worlds yearn for an open,
user-extensible platform. Although some make do with the
features of closed, proprietary games (Machinima Inc. 2004;
World of Warcraft Movies 2010), users of more open worlds
have developed a variety of novel applications, ranging from
virtual art, theatre, and music performance (SLAN), to collab-
orative visualization (Intel Corporation 2009), mixed reality
art (Leeson 2008), and distance learning (Magid 2007). This
trend towards open, extensible platforms mirrors the way
the web replaced closed content providers such as Prodigy
and CompuServe in the mid 90s. While closed, proprietary
platforms will always have their place, this trend suggests that
users desire open, extensible, federated worlds that serve as
application platforms.

We believe virtual worlds, like the web, must be seamless,
scalable, and federated to address this demand. Seamless
virtual worlds provide a single, continuous space in which
all entities interact instead of sharding entities into disjoint,
non-interacting sets. A scalable world supports millions or
billions of objects. In a federated world anyone can host
content and add it to the world, just as anyone can run a web
server. Some virtual worlds have made great strides toward the
application platform model, however none support all these
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features. Second Life, for instance, provides a seamless and
scalable virtual world, but does not support federation.

While existing work explores system design challenges for
such a platform, such as scalable architectures (Horn et al.
2009) and entity fault tolerance (Vaz Salles et al. 2009), no
existing work addresses the language design necessary to sup-
port such a platform model. This paper introduces Emerson, a
new scripting language named after Ralph Waldo Emerson, a
19th century Transcendental philosopher who emphasized the
spiritual importance of all objects in the universe. To him,
carrots, rocks, and people were all imbued with the same
spiritual facilities and powers.

The Emerson scripting language tackles the challenges
imposed by a seamless, scalable, federated virtual world for
creating behaviors for entities — physical items, avatars, build-
ings, and creatures. Entities connect to a world and interact
with it via several core services, such as location, movement,
and communication. Just as existing system architectures do
not translate to this model, we believe that existing scripting
languages are ill-suited for the challenges of a virtual world
application platform.

Three challenges make this problem different from scripting
for existing virtual worlds. First, both novice and expert users
will develop entities incrementally in the live system. Thus
the scripting language must support iterative, exploratory,
and interactive development. Second, because the world is
federated, interacting entities may not trust each other. They
cannot operate on each other’s state directly. Finally, scalabil-
ity and federation require distributed simulation. Therefore,
interacting entities may be on different hosts, introducing
lossiness and latency.

While each of these points has been addressed individually
by other systems, the combination is unique to this application.
Emerson addresses these challenges by building upon the
following core concepts:

« example-based programming in a live environment

« entity isolation and concurrency

« event-driven model with event pattern matching
With these concepts, users can create new entities using
another as a template; add features to that entity to make it
responsive to dynamic events; and easily match events to the
desired response behavior.

In the remainder of this paper, Section II gives a detailed
description of the features of Emerson, Section III describes
our current prototype, Section IV discusses related work, and
Section V concludes.
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An example of Emerson’s components and how they interact in multiple worlds. The figure shows three entities (shown bottom left to right, an

artist avatar, her gallery, and a customer) with presences in two spaces (top, the artist in World A, the gallery in both, and the customer in World B). The
gallery has different meshes and locations in the two worlds. The artist entity host runs the artist avatar and gallery; another runs the customer avatar. Only
the gallery’s internal details are shown. The gallery has two presences, two event patterns and handlers, and internal object state, anchored by a root object. In
World A, on the left, the vendor sends a message to her gallery to set an item to be loan-able to customers. This change is reflected in both worlds. In World
B, on the right, the customer sends a message to borrow an item from the gallery. This shows the complete path of the message: from the customer entity
host, routed by World B from the customer’s presence to the gallery’s, matched to an event pattern, and finally dispatched to the event handler, handleLoan.

II. LANGUAGE DESIGN

The syntax of Emerson is based on JavaScript, an easily
embeddable, prototype-based, object-oriented and functional
language. JavaScript has proven accessible to novice devel-
opers like web designers, and its syntax and design patterns
should be familiar to experienced developers. Each entity
contains a single Emerson context, which stores the current
script state and can be used to execute Emerson commands.
Scripts are dynamic, so users can edit entities interactively by
executing additional Emerson commands.

Emerson is event driven. Its runtime invokes event handlers
in response to events such as timers or message receptions.
The language explicitly distinguishes message passing and
asynchronous events from local, synchronous operations made
with function calls. Emerson entities are single-threaded, exe-
cuting only one event handler at a time. The benefits (such as
easy horizontal scalability and the relative simplicity of single-
threaded programming) and limitations (such as inconsistency
between entities) of this approach are well studied, both the-
oretically and practically (Abdallah et al. 2005; Agha 1986).

The rest of this section describes the unique features of
Emerson. Code snippets from an art gallery script demonstrate
these features. The gallery loans virtual art to users in the
world. Figure 1 shows the components of this entity as well
as how it connects to multiple worlds. The examples will refer
back to Figure 1 throughout.

A. Programming By Example

Emerson is designed for virtual worlds where all users
can be content authors. Many games, such as World of War-
craft (Gamasutra 2009), hire dozens of professional developers
to provide in-world content. In contrast, both professional
developers and end users who want to extend and improve the
world write Emerson entities. As a result, a non-user-friendly

scripting language may result in unfeatured blankness rather
than a dynamic and engaging virtual world.

To address the needs of novice users and encourage inno-
vation and experimentation by experienced users, Emerson is
strongly oriented towards exploratory programming. Specif-
ically, Emerson’s entity prototyping and dynamic language
features support this style of development.

Entity Prototyping A growing corpus of literature suggests
that a common way a programmer both learns and programs
is through a “copy-and-paste” model (Kim et al. 2004; Brandt
et al. 2009): a programmer finds extant snippets of code, copies
them into her development environment, and tailors them to
suit her applications.

While any programming language trivially supports textual
copy-and-paste programming, Emerson more deeply incor-
porates the spirit of copy-and-paste coding through entity
prototyping. Users create new entities by cloning an existing
entity as a starting point. In contrast to other languages which
use delegation for prototyping, such as Smalltalk and Self,
Emerson must copy the entire entity to preserve efficiency.
This is necessary because entities in Emerson are distributed,
so the clone may not be on the same host as the original.
In our example, the artist might begin building her gallery
by first finding a building suitable for her purpose — a
museum, an apartment, or a home. In Figure 1, the majority
of the contents of the entity, including objects and handlers,
would have been copied directly from the original. She then
customizes the clone to suit her needs, adding, for instance the
openGallery function and registering it as an event handler.
Although the artist’s gallery defaults to being copyable, she
can change it to non-copyable to protect sensitive information
or her intellectual property.

Because objects, as described in Section II-B, can be



serialized and passed in messages, prototyping occurs at the
object level as well. This encourages code reuse and permits
sharing of difficult-to-program objects. For instance, instead of
writing her own account management scheme, our artist could
copy a constructor for a complicated account management
object into her gallery entity, instantiate a copy of it, and
add an event handler which uses the account manager to
handle transactions. In Figure 1, this might include copying
the handleLoan method.

Dynamic Language Features Rapid prototyping and iterative
design play important roles in exploratory programming and
real system development (Gordon and Bieman 1993). Emerson
provides a number of dynamic language features which enable
this process while working in the live system.

Most importantly, the eval keyword in Emerson supports
dynamically adding and modifying code. Using just eval and
messages, users can extend scripts with code updates passed in
messages. For instance, an entity, such as our artist’s gallery,
will accept script messages and evaluate them in its context
by default. The artist can build the behavior of her gallery
incrementally by sending commands to it. In practice, a GUI
hides this process, providing a simple command prompt for
the entity. The artist first adds basic data structure objects and
instantiates them, possibly copying them from other entities.
Then she sets several variables, such as item descriptions, and
registers event handlers that handle interaction with customers,
as discussed in Section II-C. Later, when she needs to apply a
bug fix, she simply sends additional commands to update the
gallery’s methods and state.

B. Entities, Presences, Objects

Federation and scalability, and the distribution implied by
both, introduce two challenges not commonly faced in most
other systems. First, in a federated world, two interacting
entities may not be controlled by the same administrator. This
means that they do not trust each other and it would not be
safe to allow one to directly inspect and modify the state of
the other. Second, multiple hosts execute entities, both for
scalability and because users may host their own content. As
a result, entities must handle network latencies and message
delivery failures.

To address these challenges, Emerson distinguishes between
objects, used for local, trusted, synchronous operations and
presences, used for remote, untrusted, asynchronous, and geo-
metric operations. Each entity runs an Emerson script, which
contains objects and, through the entity, connects to worlds to
obtain presences.

Figure 1 shows how these components, with event handlers
(discussed in the next section), make up an entity and how they
interact with the world. In the figure, both the artist and her
gallery are entities: they do not share state and any messaging
between them is asynchronous — for instance, if the the artist
wants to send a message to her gallery to update the gallery’s
inventory, she does so asynchronously. As seen in Figure 1,
the artist has a presence in World A, while the gallery has a

presence in both Worlds A and B.

Objects do not have a geometric representation in the space
and constitute the internal state of an entity. In the example,
the gallery’s inventory is an object. Objects exist only in
the context of an entity and are not addressable from outside
the entity. Therefore operations on them are always local and
use synchronous method calls. In the example, the inventory
is only accessible within the gallery entity.

Figure 1 shows how entities and objects differ. If the artist
wants to begin lending a piece to patrons that she previously
kept private, the gallery entity’s inventory object must be
updated. Because the inventory is an object contained by the
gallery entity, the artist entity may not directly change it.
Instead, she sends an asynchronous message to the gallery
entity. The gallery decides how to process the request, either
honoring it and altering the state, or ignoring it. Access control
is an important aspect of the system, but we do not currently
incorporate it into the language.

The following code, based on Figure 1 modifies the gallery’s
inventory list as described. The inventory is a map of presences
for available art entities.

set_loanable = function(item_id) {
piece = inventory.find(item_id);
if (piece != undefined)

piece.loanable = true;

This code shows the use of objects by creating a
set_loanable function. Emerson uses dot-notation for
synchronous method calls and field accesses, as shown by
the call to inventory.find. A root object serves as the
last possible location for field lookup and assignment. Here,
set_loanable is added to the root object because it was
executed in the global context. Also, the inventory refers
to the field in root object because it is not prefixed by a
specific object. As shown in Figure 1, the Emerson runtime
also provides a sys field in the root object to expose entity
host functionality such as timers, access to world content, and
http requests.

Presences give an entity geometric properties, such as
location, velocity, and mesh. Entities own their presences
while holding references to the presences of other entities.
Scripts use both kinds of presences, which contain the pres-
ence’s address in the world, to send and filter messages, as
well as lookup geometric properties of the associated entity.
Entities also use presences to update their own geometric
properties. Entities may have multiple presences in order to
bridge worlds, with unique representations in each world. The
example gallery has two presences, which it uses to service
both worlds from the same inventory. As shown in the figure,
these two presences have different meshes.

Operations on presences always require communication
over the network. Therefore, these operations are asyn-
chronous and use distinct syntax from the object dot-notation
used for synchronous operations. We draw inspiration from Er-
lang, which similarly distinguishes between operations within



processes and sending messages between processes. In Emer-
son, the operators <— and —> indicate incoming and outgoing
operations on presences, respectively. The former is discussed
in Section II-C. An example of an outgoing operation is
message passing:

Message —> Presence [ —> ErrorHandler ]

where Message is a serializable object. Unlike method calls
on objects, sending a message could fail long after initiated
(e.g. a timeout). Therefore, the above statement has an optional
error handler callback, which uses the same asynchronous
syntax. Emerson uses a reliable, in-order protocol by default,
but the underlying unreliable protocol can be accessed by
advanced scripters.

The gallery, upon receiving a loan message, would reply
with a message confirming the customer’s loan:

receipt = new Receipt (status=’0K’,
item=item_id) ;
receipt -> current_customer_id ->

confirmation_failed

Emerson can use any serializable object as a message, as
receipt is here. This gives the user flexibility in how
arguments in messages are specified (an array for a traditional
method interface or an object using named fields as named
parameters).

C. Events and Event Handling

Emerson provides a unified event model and an event
matching syntax to make handling events efficient, simple and
flexible. Each event in Emerson is represented as a single
object. Special syntax creates event handlers. Handlers are
described declaratively: a pattern is used to match events and
map them to an associated handler. Handler rules can be added
or removed individually at any time, and events may cause
multiple event handlers to be invoked. Besides being easier
to use, this approach allows the runtime to optimize message
dispatch, similar to the optimization possible in SQL query
processors.

In our example, the gallery must handle a variety of events:
open in the morning, attract customers when they come nearby,
handle loans, and close up shop in the evening. The artist may
build this functionality incrementally, first declaring handlers
for 1look and borrow events, then adding code to handle
opening and closing the gallery. The borrow event only needs
to be handled if it contains an item identifier and comes from
a nearby object. The artist simply adds event handler rules as
she writes the handler functions for them.

The syntax for event handler registration is

Handler <- [Pattern] [ <— Presence]

where elements in brackets are optional. Handler is a method
which is invoked if the event matches Pattern. Because match-
ing events with particular source entities is expected to be
common, it has dedicated syntax.

Patterns allow matching fields of events (and fields of fields,
etc.) on three properties: name, prototype, and value. Each rule
takes the form:

[proto] field[.subfield[...]] [: value]

where the patterns are sets of rules:

(rulel, rule2z, ...)

The proto component in the rule compares the structure of
the object to the given prototype. This is a simple way to
quickly match common structures. For instance, specifying
Vector3 as a prototype is equivalent to checking for x, v,
and z fields. Our experience thus far suggests that these rules
cover the vast majority of cases.

In our example, the gallery registers the following events:

handlelLoan <- (action: ‘borrow’,
item_id) <- customer;

openGallery <- (timeout: ‘open’);

closeGallery <— (timeout: ‘close’);

The first handles a loan request message, sent by a customer.
It invokes handleLoan when a message from customer
has: a) a field with name action and value ' borrow’ ; and
b) a field with name item_id. The last two are handlers
for timeouts, generated by the system, and handle opening
and closing the gallery. As described above, these lines may
actually occur far from each other in the script.

III. PROTOTYPE

We have implemented a prototype of the Emerson language
in Sirikata (Sirikata), a platform for seamless, scalable, and
federated virtual worlds. The prototype is an entity host
scripting plugin built on the V8 JavaScript engine (Google
2008). A single V8 instance runs all Emerson scripts on
an entity host, assigning a separate context to each entity.
Contexts are light-weight, so using one per entity is efficient
and automatically provides isolation of Emerson scripts.

The prototype exposes entity host basics such as world
connection management and timers; basic presence function-
ality such as setting the mesh, position, velocity; and simple
messaging as described in Section II. A GUI allows users
to interactively work with entities, exploring their state and
modifying their behavior. Our prototype enables this ability by
default. Any commands a user issues modifies running entities
without rebooting them.

We have implemented the example described in this paper
and others to test our prototype. Although incomplete, the
prototype can be used to implement a variety of applications.
Besides filling in gaps, we are investigating additional lan-
guage features and building a standard library for this Emerson
prototype.

IV. RELATED WORK

Although targeting different problems and features, White et
al. (White et al. 2009) details the effects of scripting language
design on game development, and establishes the importance



of an efficient, usable scripting language. Prototype-based
object-oriented models have been used successfully in con-
text of games and virtual worlds (Ierusalimschy et al. 2007;
Emmerich 2009).

Work such as Miryung et al. (Kim et al. 2004) and
Brandt et al. (Brandt et al. 2009) inspire Emerson’s em-
phasis on copy-and-paste support. Popular languages such
as the Linden Scripting Language and UnrealScript require
recompilation and entity reboot for code updates. Alternate
Reality Kit (Smith 1987), designed in Smalltalk (Goldberg
and Robson 1983), influenced Emerson’s provisions for live
code modification.

Emerson’s concept of entities is similar to the cells in
Project Red Dwarf (formerly Darkstar) (RDS). However, our
system stores geometric properties in the space, supports fed-
eration of entities besides avatars, and does not assume central-
ized persistent storage for entities. Emerson’s event matching
is similar in spirit to ActorSpaces (Agha and Callsen 1993), but
the latter focuses on filtering entities whereas Emerson focuses
on filtering events. Erlang (Virding et al. 1996) processes use a
similar pattern matching strategy to handle messages received
from other processes. Erlang supports selective receive, but
suffers from large receive pattern matching blocks.

V. CONCLUSION

This paper presents Emerson, a scripting language that
addresses the challenges of describing entity behavior in
seamless, scalable, and federated virtual worlds. Emerson
supports a wide spectrum of developer aptitudes; event driven
programming as the norm; and a distinction between local,
trusted objects and remote, untrusted, geometric entities. Lan-
guage features such as entity and object cloning, entities
and presences, and event pattern matching directly address
these challenges. Examples such as the art gallery described
throughout, built in our prototype, suggest Emerson is power-
ful and expressive enough for many applications.

Beyond completing the prototype, we believe there are
further challenges presented by a virtual world application
platform that could be addressed by the scripting language.
Persistent storage for entity state has been addressed in previ-
ous work (Vaz Salles et al. 2009), but isolation of entities
suggests this issue should be revisited. Security is another
challenge, ranging from how to secure an entity from other
avatars, to more complex scenarios such as virtual transactions
in untrusted, federated systems. We are actively pursuing these
extensions.
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