
SharC: Checking Data Sharing Strategies for Multithreaded C

Zachary Anderson David Gay† Rob Ennals† Eric Brewer
University of California, Berkeley †Intel Research, Berkeley
{zra, brewer}@cs.berkeley.edu {david.e.gay,robert.ennals}@intel.com

Abstract
Unintended or unmediated data sharing is a frequent cause of in-
sidious bugs in multithreaded programs. We present a tool called
SharC (short for Sharing Checker) that allows a user to write
lightweight annotations to declare how they believe objects are be-
ing shared between threads in their program. SharC uses a com-
bination of static and dynamic analyses to check that the program
conforms to this specification.
SharC allows any type to have one of five “sharing modes” —

private to the current thread, read-only, shared under the control of
a specified lock, intentionally racy, or checked dynamically. The
dynamic mode uses run-time checking to verify that objects are
either read-only, or only accessed by one thread. This allows us to
check programs that would be difficult to check with a purely static
system. If the user does not give a type an explicit annotation, then
SharC uses a static type-qualifier analysis to infer that it is either
private or should be checked dynamically.
SharC allows objects to move between different sharing modes

at runtime by using reference counting to check that there are no
other references to the objects when they change mode.
SharC’s baseline dynamic analysis can check any C program,

but is slow, and will generate false warnings about intentional data
sharing. As the user adds more annotations, false warnings are
reduced, and performance improves. We have found in practice that
very few annotations are needed to describe all sharing and give
reasonable performance. We ran SharC on 6 legacy C programs,
summing to over 600k lines of code, and found that a total of only
60 simple annotations were needed to remove all false positives and
to reduce performance overhead to only 2–14%.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Concurrent program-
ming structures

General Terms Languages

1. Introduction
The ongoing migration of mainstream processors to many cores ac-
celerates the need for programmers to write concurrent programs.
Unfortunately, programmers generally find concurrent programs
much more difficult to write than sequential programs. One signif-
icant reason for this is that unintended data sharing among threads

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’08, June 7–13, 2008, Tucson, Arizona, USA.
Copyright c© 2008 ACM 978-1-59593-860-2/08/06. . . $5.00

can make program behavior hard to understand or predict. By un-
intended sharing we mean data shared among threads in ways that
the programmer does not expect and that are not part of the de-
sign of the program. One key symptom of unintended sharing is a
data race — when two or more threads access the same memory
location without synchronization, and at least one access is a write.
However, rather than looking only for data races, we consider most
data sharing, even if mediated by locks or signaling, to be an error
unless it has been explicitly declared by the programmer. We find in
large real programs that requiring sharing to be explicitly declared
is not unreasonable.
Unintended or unmediated sharing is often considered a major

source of hard-to-find bugs in low-level multithreaded programs.
Searching for vulnerabilities caused by race conditions in the US-
CERT advisory archive yields hundreds of results [24]. The unin-
tended sharing that causes data races is difficult to diagnose because
its occurrence and its effects are highly dependent on the scheduler.
This fact may frustrate developers using traditional tools such as a
debugger or print statements, which may alter the schedule. Even
when unintended sharing is benign, it may indicate places the pro-
grammer may need to investigate more carefully.
In this paper, we present SharC, a tool that allows a C program-

mer to declare the data sharing strategy that a program should fol-
low, and then uses static and dynamic analysis to check that the
program conforms to this strategy. Dynamic analysis allows SharC
to check any program, including programs that would not be easily
checkable with purely static analysis. SharC’s static analysis im-
proves performance by avoiding dynamic checks where unintended
sharing is impossible.
When using SharC, a programmer uses type qualifiers to declare

the sharing mode of objects. Sharing modes can declare that an ob-
ject is thread-private, read-only, protected by a lock, intentionally
accessed in a racy way, or checked dynamically. The dynamic shar-
ing mode checks at run time that the object is either read-only, or
only accessed by one thread. This allows SharC to check programs
that would be difficult to check with a purely static system. The
annotation burden is low because SharC makes reasonable and pre-
dictable guesses at unannotated types. Further, SharC allows the
programmer to change an object’s sharing mode using a cast, and
uses reference counting to check the safety of such casts dynami-
cally (Section 2).
We show that SharC’s mixed static/dynamic checking approach

is sound (i.e., detects all data races and checks all sharing mode
changes), for a simple C-like language with thread-private and
dynamic sharing modes (Section 3). We then describe SharC’s
implementation, in particular how it selects sharing modes for
unannotated types and implements its runtime checks (Section 4).
SharC can be applied to programs incrementally. As more an-

notations are added, the false positive rate drops and performance
improves. We ran SharC on a set of real legacy C programs, which
sum to over 600k lines of code. Two of the benchmarks are over
100k lines of code, and some contain kernels that have been finely

tuned for performance. Further, we chose benchmarks that use
threads in a variety of ways, from threads for serving clients, to hid-
ing I/O and network latency, to improving performance. We found
that for this set of programs, the number of annotations required
to eliminate false positives and achieve reasonable performance
(i.e., 9% runtime and 26% memory overheads) is small (Section 5).
These results provide good evidence for the generality and practi-
cality of our approach.
In summary, this paper makes the following novel contributions:
• We specify a lightweight type annotation system that uses a
mixture of statically and dynamically checked properties to
describe many of the data sharing conventions used in existing
multithreaded C programs. We show that in practice, these
annotations are not overly burdensome. Indeed we believe that
they are sufficiently simple and clear that they could be viewed
as compiler-checked documentation.
• We show that dynamic reference counting makes it possible to
safely cast an object between different sharing modes.
• We describe a new dynamic race detection algorithm that uses
and enforces the sharing mode annotations supplied by the
programmer, and those discovered by a flow-insensitive type
qualifier analysis.
• We describe our implementation, and demonstrate its practical-
ity by applying it to several large, real-world, legacy1 C pro-
grams. On these programs we observe lower performance over-
heads than existing dynamic race detection tools. We believe
these overheads are low enough that our analysis could con-
ceivably be left enabled in production systems.

Our implementation also includes an adaptation of the fast con-
current reference counting algorithm found in the work of Levanoni
and Petrank [16]. We describe our modifications (Section 4.3), as
they may also be useful in memory management schemes for C
that rely on reference counting and wish to handle multithreaded
programs efficiently.

2. SharC’s API
SharC uses a mixture of static and dynamic checking to provide
an API that is simple to understand, and yet is complete enough
that large real programs can be checked with reasonable runtime
efficiency. SharC’s first key concept is a set of sharing mode anno-
tations that describe the rules that threads must follow when access-
ing a particular object. The programmer can annotate types with the
following sharing mode qualifiers:

• private: Indicates that an object is owned by one thread and
only accessible by this thread (enforced statically).
• readonly: Indicates that an object is readable by any thread
but not writeable, with one exception: a readonly field in a
private structure is writeable (enforced statically). This ex-
ception makes initialization of readonly structure fields prac-
tical, while maintaining the read-only property when the struc-
ture is accessible from several threads. Unlike C’s existing
const qualifier, readonly may be safely cast to another shar-
ing mode that allows writes, as described below.
• locked(lock): Indicates that an object is protected by a lock
and only accessible by whatever thread currently holds the lock
(enforced by a runtime check). Here, lock is an expression or
structure field for the address of a lock, which must be verifiably

1 By “legacy code” we mean any existing (including multithreaded) C code.
We contrast SharC with languages intended for new code (e.g. Cilk [4], and
Cyclone [14]).

constant (uses only unmodified locals or readonly values) for
type-safety reasons.
• racy: A mode for objects on which there are benign races (no
enforcement required).
• dynamic: Indicates that SharC is to enforce at runtime that the
object is either read-only, or only accessed by a single thread.

SharC selects a sharing mode for each unannotated type, using
a set of simple rules and a whole-program sharing analysis that
infers which objects may be accessed by more than one thread. The
rules were selected based on our experience using SharC, and help
keep the annotation burden low in practice. These rules include a
limited form of qualifier polymorphism for structures: unqualified
fields inherit the qualifier of their containing structure instance. The
result of the sharing analysis is used to add dynamic and private
qualifiers. Unannotated types that refer to objects accessible by
more than one thread should be checked for races, so they get the
dynamic qualifier. All remaining unannotated types are given the
private qualifier. The qualifiers inferred by this analysis are not
trusted: they are statically checked for well-formedness, and by our
dynamic analysis. The rules and analysis are described in detail in
Section 4.1.
The dynamic sharing mode makes SharC practical for large,

real-world programs by avoiding the need for complex polymor-
phic types. However, in real programs, objects often go through a
sequence of sharing modes. For example, in a producer-consumer
relationship, an object is first private to the producer, then protected
by a lock, then private to the consumer. Thus, SharC’s second key
feature is a sharing cast that allows a program to change an object’s
sharing mode:

int readonly *y; ... x = SCAST(int private *, y);

SharC enforces the soundness of these casts by nulling-out the
pointer being cast, and by using reference-counting to ensure that
the pointer being cast is the only reference to the underlying object.
If we have the only reference to some object, then we can, e.g.,
safely cast it to or from private, since no thread will be able to
see the object with the old sharing mode.
SharC can infer where sharing casts are needed to make a pro-

gram type-check. However, since nulling-out a cast’s source may
break the program, SharC does not insert these casts automatically,
but instead suggests where they should be added. It is then up to
the programmer to add the suggested casts to the program if they
are safe, or make alternative changes if they are not. Additionally,
SharC will emit a warning if a pointer is definitely live after being
nulled-out for a cast.

2.1 An Example
Consider a multithreaded program in which a buffer is read in from
a file, passed among threads in a pipeline for various stages of
processing, and then output to disk, screen, or other medium. This
is a common architecture for multimedia software, for example the
GStreamer framework [11].
The core function implementing such a pipeline is shown in

Figure 1. The stage structures are arranged in a list, and there is a
thread for each stage. Each thread waits on a condition variable for
sdata (line 16).When data arrives, the pointer is copied into a local
variable (line 17), the original pointer is nulled (line 18), and the
previous stage is signaled (line 19). This indicates that the current
stage has taken ownership of the data, and that the previous stage
is free to use the sdata pointer of the current stage for the next
chunk of data. Having claimed the data, the current stage processes
it somehow (line 21), waits for the next stage to be ready to receive
it (line 25), copies the pointer into the next stage (line 27), and then

1 // pipeline test.c
2 typedef struct stage {
3 struct stage *next;
4 cond *cv;
5 mutex *mut;
6 char *locked(mut) sdata;
7 void (*fun)(char private *fdata);
8 } stage t;
9
10 void *thrFunc(void *d) {
11 stage t *S = d, *nextS = S->next;
12 char *ldata;
13 while (notDone) {
14 mutexLock(S->mut);
15 while (S->sdata == NULL)
16 condWait(S->cv,S->mut);
17 ldata = SCAST(char private *, S->sdata);
18 S->sdata = NULL;
19 condSignal(S->cv);
20 mutexUnlock(S->mut);
21 S->fun(ldata);
22 if (nextS) {
23 mutexLock(nextS->mut);
24 while (nextS->sdata)
25 condWait(nextS->cv,nextS->mut);
26 nextS->sdata =
27 SCAST(char locked(nextS->mut) *, ldata);
28 condSignal(nextS->cv);
29 mutexUnlock(nextS->mut);
30 }
31 }
32 return NULL;
33 }

Figure 1. A simple multithreaded pipelining scheme as might be
used in multimedia software. Items in bold are the additions for
SharC.

signals that the next stage may claim it (line 28). The process then
repeats until all chunks have been processed.
SharC will compile this code as is. However, since the program-

mer has not added annotations to tell SharC the desired sharing
strategy, SharC will assume that all sharing it sees is an error, and
will generate an error report. SharC reports two kinds of data shar-
ing. First, it reports sharing of the sdata field of the stage struc-
tures. The following is an example of such a report.
read conflict(0x75324464):

who(2) S->sdata @ pipeline test.c: 15

last(1) nextS->sdata @ pipeline test.c: 27

This indicates that thread 2 tried to read from address 0x75324464
through the l-value S->sdata on line 15 of the file after thread 1
wrote to the address through l-value nextS->sdata on line 27.
Without knowledge of the desired sharing strategy, SharC assumes
that this sharing is an error.
This error report was generated by SharC’s dynamic checker.

SharC was not able to prove statically that the sdata field was
private, so it inferred the dynamic sharing mode for sdata, and
monitored it at runtime for races (two threads have accessed the
same location, with at least one access being a write).
As a human reading the code, it is clear that the programmer

intended the sdata field to be shared between threads, and to be
protected by the mut lock. We can declare this policy to SharC by
adding a locked annotation to line 6. Now, rather than checking
that sdata is not accessed by more than one thread, SharC will
instead check that the referenced lock is held whenever sdata is
accessed.

1 // pipeline test.c
2 typedef struct stage(q) {
3 struct stage pdynamic *q next;
4 cond racy *q cv;
5 mutex racy *readonly mut;
6 char locked(mut) *locked(mut) sdata;
7 void (*q fun)(char private *private fdata);
8 } stage t;
9
10 void dynamic*private thrFunc(void dynamic *private d){
11 stage t dynamic *private S = d;
12 stage t dynamic *private nextS = S->next;
13 char private *private ldata;
14 ...
15 }

Figure 2. The stage structure, with the annotations inferred by
SharC shown un-bolded. The qualifier polymorphism in structures
is shown through the use of the qualifier variable q.

SharC will also report sharing of memory pointed to by the
sdata field. Here is an example:
write conflict(0x75324544):

who(2) *(fdata + i) @ pipeline test.c: 52

last(3) *(fdata + i) @ pipeline test.c: 62

Lines 52 and 62 are not shown in the figure, but are both in
functions that can be pointed to by the fun field of the stage
structure. In these functions, fdata is equal to the ldata pointer
that was passed as the argument to fun. The error message indicates
that thread 2 tried to write to address 0x75324544 through the l-
value *(fdata+i) on line 52 after thread 3 had read from the same
address through the l-value *(fdata+i) on line 62.
Here, SharC is not aware that ownership of the buffer is being

transferred between the threads, and so believes that the buffer is
being shared illegally. The user can tell SharC what is going on
by adding a private annotation to the fdata argument of fun on
line 7. This will cause SharC to infer that ldata is private rather
than dynamic, but type checking will fail at lines 17 and 27 due
to the assignment of a (char locked(mut)*) to and from (char
private*). To fix this, SharC suggests the addition of the sharing
casts (SCAST(. . .)) shown in bold on lines 17 and 27. As discussed
above, these sharing casts will null-out the cast value (S->sdata
or ldata) and check that the reference count for the object is
one. For line 17 this ensures the object referenced by S->sdata
is not accessible by inconsistently qualified types (locked(...)
and private). These two annotations and two casts are sufficient
to describe this simple program’s sharing strategy, and allow it to
run without SharC reporting any errors.
Figure 2 shows the sharing modes selected by SharC for the

stage struct, and the first few lines of the thrFunc function. The
next, cv and fun fields inherit the structure’s qualifier q. The
internals of pthread’s lock and condition variable types (mutex,
cond) have data races by their very nature, so they have the racy
qualifier. The mut field must be readonly for type-safety reasons,
as the type of sdata depends on it. The object referenced by sdata
has “inherited” its pointer’s sharing mode. The object referenced
by next has not been annotated, so must be given the dynamic
mode since the structure’s qualifier can’t be similarly “inherited”
for referent types for soundness reasons. SharC’s sharing analysis
infers that the object passed to thrFunc is accessible from several
threads, so d, S and nextS must be pointers to dynamic.
At runtime for the annotated program, SharC will check that:

1. When the sdata field of a stage structure is accessed, the mut
mutex of that structure is held.

Core Type σ ::= int | ref τ
Sharing Mode m ::= dynamic | private
Type τ ::= m σ | thread
Program P ::= τ x | f (){τ1 x1 . . . τn xn; s} | P; P
L-expression # ::= x | ∗ x | a
Expression e ::= # | scastτ x | n | null | newτ
Statement s ::= s1; s2 | spawn f ()

| # := e [when ω1(#1), . . . , ωn(#n)]
| skip | done | fail

Predicate ω ::= chkread | chkwrite | oneref
f , x ∈ Identifiers a, n ∈ Integer constants

Figure 3. The grammar for a simple concurrent language with
global and local variables, and qualifiers for describing sharing.
done, skip, fail and runtime addresses (a) are only used in the
operational semantics.

2. When the non-private pointer S->sdata is cast to private
on line 17, no other references to that memory exist.

3. When the private pointer ldata is cast to a non-private
type on line 27, no other references to that memory exist.

4. There are no races on objects inferred to be in dynamic mode.

3. The Formal Model
In this section we present a formal model for SharC. We reduce
the set of sharing modes to just private and dynamic, omitting
racy, locked, and readonly. We also use a simplified version
of the C language. Our goal is to express the essence of SharC,
without obscuring it with these additional features. The formalism
is readily extendable to include locked, readonly, and racy.

3.1 Language
Figure 3 shows the grammar for the language. A type (τ) includes a
private or dynamic sharing mode. Programs (P) consist of a list
of declarations of thread definitions and global variables. Thread
definitions (f) have no arguments or results and declare local vari-
ables. We assume that all identifiers are distinct. The thread body
is a sequence of statements (s) that spawn threads and perform as-
signments. Control flow has no effect on our type system or runtime
checks, so it is omitted from the language. L-values (#) include
global and local variables, and dereferences of local variables (this
restriction is enforced in the type system). Assignments can assign
l-values, constants (n, null) and newly allocated memory cells, and
perform casts that change the sharing mode of a referenced cell
(scast x). Note that casts implicitly null-out their source, to elimi-
nate the reference with the old type. Runtime checks (added during
type checking) are represented by guards (when ω1, . . .) on assign-
ments. The runtime checks consist of assertions that it is safe to
access memory cells (chkread, chkwrite), and assertions that there
is only one reference to a cell (oneref).

3.2 Static Semantics
The static type-checker (Figure 4) checks that programs are well-
typed and inserts runtime checks for casts and accesses to objects
with dynamic sharing mode. The rules for checking programs
ensure that global declarations use the dynamic sharing mode
(GLOBAL) and that no type has a dynamic reference to a private
type (REF CTOR). The thread type is used to identify threads in Γ
and cannot appear in user-declared types. The five assignment rules
(*-ASSIGN) check the types being assigned and rely on the R and
W functions to compute runtime checks for accesses to objects in
dynamic mode.

Γ $ P⇒ P′ In environment Γ program P compiles to P′, which
is identical to P except for added runtime checks.

()
$ dynamic ref τ Γ[x : τ] $ P⇒ P′

Γ $ τ x; P⇒ τ x; P′

()
$ τi

Γ[x1 : τa, . . . , xn : τn] $ s⇒ s′ Γ[f : thread] $ P⇒ P′

Γ $ f (){τ1 x1 . . . τn xn; s};P⇒ f (){τ1 x1 . . . τn xn; s′}; P′

$ τ Type τ has no dynamic references to private types

( )

$ m int

( )
$ m′σ m = m′ ∨ m = private

$ m ref (m′σ)

Γ $ # : τ In environment Γ, # is a well-typed l-value with type τ.

()
Γ(x) = τ
Γ $ x : τ

()
Γ(x) = private ref τ

Γ $ ∗x : τ

Γ $ s⇒ s′ In environment Γ statement s compiles to s′, which
is identical to s except for added runtime checks.

()
Γ $ s1 ⇒ s′1 Γ $ s2 ⇒ s′2

Γ $ s1; s2 ⇒ s′1; s
′
2

()
Γ(f) = thread

Γ $ spawn f ()⇒ spawn f ()

(-)
Γ $ # : m int

Γ $ # := n ⇒ # := n when W(#,m)

(-)
Γ $ # : m ref τ

Γ $ # := null⇒ # := null when W(#,m)

(-)
Γ $ # : m ref τ

Γ $ # := newτ ⇒ # := newτ when W(#,m)

()
Γ $ #1 : m1 σ Γ $ #2 : m2 σ

Γ $ #1 := #2 ⇒ #1 := #2 when W(#1,m1),R(#2,m2)

(-)
Γ $ # : m ref (m1 σ)

Γ(x) = private ref (m2 σ) τ = m1 σ
Γ $ # := scastτ x⇒ # := scastτ x when oneref(() ∗ x),W(#1,m)

Types with dynamic sharing mode need runtime checks

R(#, dynamic) = chkread(#) R(#, private) = ε
W(#, dynamic) = chkwrite(#) W(#, private) = ε

Figure 4. Typing judgments.

S ::= S ; s | [·]S | l := e when ω1([·]L), ω2(#2), . . . , ωn(#n) | [·]L := e | a := [·]L

M, E : x
#−→ E(x) M, E, id : skip; s s−→ M, ◦, s

M, E : ∗x #−→ Mv(E(x)) M, E, id : spawn f ()
s−→ M, f , skip

M, E, id : a1 := a2
s−→ M[a1

v−→ Mv(a2)], ◦, skip M, E, id : a := null
s−→ M[a

v−→ 0], ◦, skip
M,E, id : a := newτ

s−→ extend(M[a
v−→ m + 1], id, τ), ◦, skip M, E, id : a := n

s−→ M[a
v−→ n], ◦, skip

M,E, id : a1 := scastτ a2
s−→ M[a1

v−→ v2, a2
v−→ 0, v2

τ−→ τ, v2
o−→ id, v2

R−→ ∅, v2
W−→ ∅], ◦, skip where v2 = M(a2).value

M, E, id : # := e when ω1(a), ω2(#2) . . . , ωn(#n)
s−→ M′, ◦, # := e when ω2(#2), . . . , ωn(#n) if M, id |= ω1(a)⇒ M′

M, E, id : # := e when ω1(a), ω2(#2) . . . , ωn(#n)
s−→ M, ◦, fail if M, id ,|= ω1(a)

M, E, id : s
s−→ M′, f , s′

M, E, id : S [s]S → M′, f , S [s′]S
M, E : #

#−→ #′ #′ ! 0
M, E, id : S [#]L → M, ◦, S [#′]L

M, E : #
#−→ #′ #′ = 0

M, E, id : S [#]L → M, ◦, fail

M, E, i : si → M′, ◦, s′i
M, . . . , (Ei , si), . . .→ M′, . . . , (E′i , s′i), . . .

M′ = threadexit(M, Ei , i)
M, . . . , (Ei, skip), . . .→ M′, . . . , (Ei ,done), . . .

M, E, i : si → M′, f , s′i f (){τ1x1 . . . τn xn; s} ∈ P E = G[x1 → m + 1, . . . , xn → m + n] M′′ = extend(M′, n + 1, τ1, . . . , τn)
M, . . . , (Ei, si), . . . , (En , sn)→ M′′, . . . , (E′i , s′i), . . . , (En, sn), (E, s)

m = max(Dom(M))
extend(M, id, τ1, . . . , τk) = M[. . . , (m + i)

τ−→ τi, (m + i)
v−→ 0, (m + i)

o−→ id, (m + i)
R−→ ∅, (m + i) W−→ ∅, . . .]

threadexit(M, E, id) = M′ where




M′v(a) = 0 if ∃x ∈ dom(E) − dom(G).E(x) = a
M′v(a) = Mv(a) otherwise
M′τ(a) = Mτ(a),M′R(a) = MR(a) − {id},M′W (a) = MW (a) − {id}

Figure 5. Parallel operational semantics.

Sharing casts (CAST-ASSIGN) allow, e.g., the conversion of a
ref (dynamic int) to a ref (private int). To guarantee soundness,
this sharing cast is preceded by a oneref check that ensures that
the converted reference is (at runtime) the sole reference to the
dynamic int. It is not possible to convert types that differ further
down, e.g., you cannot cast from ref (dynamic ref (dynamic int))
to ref (private ref (private int)) as the existence of a single
reference to (dynamic ref (dynamic int)) does not guarantee that
there are not more references to the underlying int.
To prevent other threads changing x between a runtime check

and the assignment it protects, x must be private (and hence a
local variable) in the CAST-ASSIGN and DEREF rules. It is easy
to rewrite a program with extra local variables to meet this require-
ment. The remaining rules are straightforward and self explanatory.

3.3 Dynamic Semantics
In Figures 5 and 6 we give a small-step operational semantics for
our simple language. This semantics gives a formal model for the
way that SharC checks accesses to objects in dynamic mode, and
checks casts between sharing modes. The runtime environment
consists of three mappings and an integer thread identifier:

• Memory M : !→ " × τ ×! ×P(!) ×P(!)
M maps a cell’s address to its value, type, owner, and sets
of readers and writers (sets of thread identifiers). For cells of
reference type, the value is the address of the referenced cell
(0 is always an invalid address). For cells in private mode,
the owner is the thread that can access the cell. We use the
notations Mv, Mτ, Mo, MR and MW to denote the projection of
M to (respectively) it’s value, type, owner, readers and writers.
Correspondingly, M[a

v−→ n] is the memory that differs from

M only by the fact that M[a
v−→ n]v(a) = n (and so on for the

other elements of a cell). At program start M maps the global
variables to zeroes of the appropriate type, with empty reader
and writer sets, and owner = 0 (no owner).
Note that SharC’s implementation does not need to track types
or owners at runtime (the type and owner elements are never
read by the operational semantics).
• Globals G : var → ! gives the address of each global variable
in M.G never changes, so we use it directly when needed.
• Environment E : var → ! gives the addresses in M of the
variables of a particular thread (locals and globals).
• Thread id : ! is a positive natural number identifying a thread.

There are three kinds of transition rules and a runtime judgment:

• M, E : # #−→ a— In the given environment the l-value # evaluates
to the address a where the l-value is stored.
• M, E, id : s s−→ M′, f , s′— In the given environment, the execu-
tion of statement s results in new memory M′ and proceeds to
statement s′. If f ! ◦, thread f should be spawned.
• M, (E1, s1), . . . , (En, sn) → M, (E1, s′1), . . . , (Em, s

′
m) — A sys-

tem with main memory M and n threads with environments
Ei currently executing statement si transitions to a new state
with main memory M′ and new thread state. Each step cor-
responds to a change in a single thread i, so ∀ j ! i.sj = s′j.
The choice of which thread advances at any given point is
non-deterministic. Terminated threads are left in the list with
sk = done and at most a single thread is spawned at each step,
so m = n ∨m = n + 1.

MW (a) − {id} = ∅

M, id |= chkread(a)⇒ M[a
R−→ MR(a) ∪ {id}]

MR(a) − {id} = ∅ MW (a) − {id} = ∅

M, id |= chkwrite(a)⇒ M[a
W−→ MW (a) ∪ {id}]

|{b|M(b).value = a ∧ M(b).type = m ref τ}| = 1
M, id |= oneref(()a)⇒ M

Figure 6. Semantics for performing runtime checks. Checks are
executed in one big step once their argument is known.

• M, id |= ω(a) ⇒ M′ — Given memory state M, runtime check
ω is satisfied for the cell at address a with new reads and writes
by id recorded in M′.
The chkread and chkwrite checks update readers and writers, as
the check and update must be done atomically, but the subse-
quent reads and writes can be performed independently assum-
ing the runtime check succeeds.

Most of the semantic rules are straightforward. The do-nothing
skip statement is used internally to simplify the semantics. Runtime
checks (when) are executed left-to-right before the assignment that
they guard. If a runtime check fails, or if a null pointer is deref-
erenced, the thread transitions to the special fail statement, leav-
ing the thread blocked. The chkread and chkwrite runtime checks
(Figure 6) enforce the n-readers-or-1-writer restriction for dynamic
cells. The extend function extends the memory map with n new
memory cells of the specified type, initialized to zero. Finally,
threadexit updates the memory after a thread exits: the thread is
removed from all readers and writers sets, and the cells containing
the thread’s locals are set to zero.
The most interesting part of the semantics is the rule for scast.

First, as enforced by the static semantics, the oneref predicate is
used to check that there is a single reference to the object referenced
by local variable x. This guarantees that it is safe to change the type
of ∗x as specified by the cast. Second, x itself must be set to null, as
there would otherwise be two ways of accessing the same memory
cell with inconsistent types. Finally, the modified memory cell has
its reader and writer sets cleared: after a cast, past accesses by other
threads no longer constitute unintended sharing since the user has
explicitly changed the cell’s sharing mode, and verified that other
threads can no longer access it.
The oneref check is specified using heap inspection for simplic-

ity of exposition, while the SharC implementation uses reference
counting. This does not affect our semantics as our simple language
does not support recursive types.

3.4 Soundness
We have proved that these semantics guarantee that the declared
sharing strategy is respected:
• private cells are only accessed by the thread that owns them
• no two threads have a race on a dynamic cell, i.e., access the
same dynamic cell with at least one access being a write, unless
there has been an intervening sharing cast

The proof is based on showing that at all times, all threads are
well-typed, well-checked (necessary runtime checks hold or will be
performed), and consistent with the memory.

D 1. M is consistent with the environment E of thread id if
types and owners are consistent between E, M and the static seman-

tics, and when one cell refers to another within M. Furthermore, the
readers and writers sets in M must have legal values. Formally, for
all addresses a with non-zero value b = Mv(a), and all variables x
with declared type τx:
• Mτ(E(x)) = τx (variable types are preserved)
• x " Dom(G) ⇒ Mo(E(x)) = id (local variables are owned by
their thread)
• Mτ(a) = m ref τ⇒ b ! E(x) (variables are not addressable)
• Mτ(a) = m ref τ⇒ Mτ(b) = τ (types are consistent)
• Mτ(a) = private ref (private σ)⇒ Mo(a) = Mo(b) (owners
are consistent)
• |MW (a)| ≤ 1 (no more than one writer)
• MW (a) ! ∅ ⇒ MR(a) ⊆ MW (a) (no other readers than the
writer)

Proof Outline: The proof proceeds by induction over steps of
the operational semantics, showing that all steps preserve well-
typedness, well-checkedness and consistency. From this, it imme-
diately follows that private accesses are safe, i.e., when thread id
reads or writes private cell a, a’s owner is id. Similarly, well-
checkedness implies that dynamic accesses are safe, i.e., when
thread id reads (respectively, writes) dynamic cell a, chkread (a)
(respectively, chkwrite (a)) holds. Therefore no races occur on
dynamic cells. The full proof is found in our technical report [2].

4. Implementation
The input to the SharC compiler is a partially annotated C pro-
gram. The SharC compiler first infers the missing annotations (Sec-
tion 4.1). SharC then type-checks and instruments with runtime-
checks the now-complete program. This augmented code is then
passed to a normal C compiler and linked with SharC’s runtime
library.
At runtime, SharC verifies correct use of dynamic and locked

locations, and checks that sharing casts are only applied to objects
to which there is only one reference (Section 4.2).
SharC assumes that its input is a type- and memory-safe C

program. Furthermore, sharing casts that change qualifiers of (void
*) types are forbidden. The programmer must cast the (void *)
pointer to a concrete type before the sharing change so that SharC
can check that the change is legal. To ensure full soundness, SharC
would need to be combined with a system such as CCured [18], or
Deputy [6] that checks such (void *) casts and guarantees type-
and memory-safety.

4.1 Sharing Analysis
The main purpose of SharC’s sharing analysis is to determine
which data might be shared across threads and needs the dynamic
mode, with the remaining data being private. Additionally, how-
ever, to reduce the annotation burden, SharCwill infer other sharing
modes by following these simple rules:
• A field or variable used in a locked qualifier must be readonly,
to preserve soundness.
• Type definitions can specify that they are inherently racy. This
is used, e.g., for pthread’s mutex and cond types.
• SharC provides a simple form of qualifier polymorphism for
structs. If the outermost qualifier on a structure field is not
specified, it is inferred to be the same as the qualifier on the
instance of the structure. This is sound, since structure fields
occupy the same memory that is described by the instance. As
a consequence, SharC does not allow the outermost annotation
of a field to be private: within a private struct, such a field
is already private, while accesses to a private field within a
non-private struct would be unsound.

• Outside of structure definitions, if the target type of a pointer is
unannotated, then it is assumed to be the type of the pointer.
For instance (int * dynamic) becomes (int dynamic *
dynamic), but (int dynamic * private) remains as is. In-
side of a structure definition, unannotated pointer target types
are given the dynamic mode.
• An array is treated like a single object of the array’s base type.

We have found that these rules expedite the application of SharC to
real C programs.
After these rules have been applied, the sharing analysis makes

all remaining unannotated types either private or dynamic. Be-
cause accesses to dynamic objects are checked at runtime to detect
data races, SharC attempts to minimize the number of objects in-
ferred to be dynamic. First, we describe how the dynamic qualifier
flows for assignments and function calls. Second, we describe how
the analysis is seeded by a set objects that are inherently shared
among threads. Taken together, this is sufficient to identify all the
potentially shared objects that need the dynamic qualifier.
For assignments, we follow CQual’s[10] flow-insensitive type

qualifier rules, with changes to account for qualifier polymorphism
in structures. To avoid overaggressive propagation of the dynamic
qualifier, we only infer that it flows from formals to actuals in the
following case: if a formal is stored in a dynamic location, or has
a dynamic location stored in it, then the dynamic qualifier will
flow to the actual at the call site. This is equivalent to adding a
second kind of dynamic qualifier, which we internally refer to as
dynamic in, which accepts both private and dynamic objects.
Users of our system never see or write this qualifier.
Next, we must find the shared objects with which to seed the

analysis. First, we observe that for an object to be shared, it must
be read or written in a function spawned as a thread. The locations
available to a function spawned as a thread are the following:
• locals — These can only be shared if their addresses are written
into another shared location, so locals are not seeds.
• formals — The argument to the thread function is an object
passed by another thread, so is inherently shared and seeds the
analysis.
• globals — All globals touched by thread functions might be
shared, and so are seeds for the analysis.

It is an error if any of these inherently shared objects have been
annotated as private.
In order to identify all globals that might be touched by threads,

we construct control flow graphs rooted at the functions that are
spawned as threads. We handle function pointers by assuming that
they may alias any function in the program of the appropriate type.
This is sound under our type and memory safety assumption.

4.2 Runtime Checks
At runtime, SharC tracks held locks, reference counts, and reader,
writer sets for dynamic locations. This information is then in-
spected in a straightforward way by the various runtime checks.

4.2.1 Tracking Reader and Writer Sets
For every 16 bytes of memory SharC maintains an extra n bytes
that record how each thread has accessed those 16 bytes. We can
support up to 8n − 1 threads when n extra bytes are used for record
keeping. For the applications we have evaluated with SharC, setting
n = 1 has been sufficient. Accesses and updates to the bits are made
atomic, as required by the chkread and chkwrite checks, through
use of the cmpxchg instruction available on the x86 architecture.
These extra bytes encode the reader and writer sets as follows. If
the low (0-th) bit is set, this indicates that a single thread is reading

1 void *scast(void *src, void **slot) {
2 *slot = NULL;
3 if (refcount(src) > 1)
4 error();
5 return src;
6 }

Figure 7. The procedure for checking a sharing cast.

and writing to the location. If the n-th bit is set, this indicates that
the n-th thread is reading from the location, and writing to it if the
0-th bit is also set. This encoding of reader, writer sets does not
scale well to larger numbers of threads. In the future, we plan to
explore alternative, more efficient encodings.
When heap memory is deallocated with free(), it is no longer

considered to be accessed by any thread, and all of its bits are
cleared. When a thread ends, the bits recording its accesses are
cleared: SharC does not consider it a race for two threads to access
the same location if their execution does not overlap. The clearing
operation is made efficient by logging the addresses of all of a
thread’s reads and writes on its first accesses to those addresses.

4.2.2 Tracking Held Locks
When a lock is acquired, the address of the lock is stored in a thread
private log. When a thread accesses an object in the locked sharing
mode, a runtime check is added that ensures the required lock is
in the log. When the lock is released, the address of the lock is
removed from the log.

4.2.3 Checking Sharing Casts
The procedure for checking a sharing cast is given in Figure 7.
When a programmer adds an explicit sharing cast, e.g. x =
SCAST(t, y), SharC transforms it into x = scast(y, &y) after
determining that the cast is legal. The address of the reference is
needed so that the reference can be nulled out. Then, if there is more
than one reference to the object being casted, an error is signaled.
Finally, the reference is returned. In the example above, if y were
still live after the cast, SharC would issue a warning. This warning
lets the programmer know that the reference will be null after the
cast. The procedure for determining reference counts is described
in section 4.3.

4.3 Maintaining Reference Counts
SharC builds upon the authors’ prior work [13] in reference count-
ing C. Applying this work directly in SharC implies atomically up-
dating reference counts for all pointer writes. The resulting over-
head is unacceptable on current hardware, even on x86 family
processors that support atomic increment and decrement instruc-
tions. To reduce this overhead, SharC performs a straightforward
whole-program, flow-insensitive, type-qualifier-like analysis to de-
tect which locations might be subject to a sharing cast. Only point-
ers to these locations need reference count updates. However, even
with this optimization, the runtime overhead is still too high (over
60% in many cases). To reduce this overhead, we adapted Levanoni
and Petrank’s high performance concurrent reference counting al-
gorithm [16] (designed for garbage collection) for use with SharC.
In Levanoni and Petrank’s algorithm, there are a number of

threads mutating data(i.e. mutators), and a distinguished thread
that performs garbage collection(i.e. the collector). Each mutator
thread keeps a private, unsynchronized log of the reference updates
it performs. The log contains a record for each update of which
reference was updated along with the old value that was overwritten
by the update. To keep the log size manageable, an entry is only
added the first time a reference is updated. This is accomplished
by keeping a dirty bit for each reference, which is set the first time

the reference is updated, and occasionally cleared by the collector
thread.
When a reference count is needed, the collector thread stops the

mutator threads, copies their logs before clearing them, resets the
dirty bits, and starts the mutator threads running again. The collec-
tor thread then processes the logs as follows. First, the reference
counts for the overwritten values are decremented. Next, the refer-
ence counts for the new values are incremented, but only when the
dirty bit for the reference cell has not been set again since the mu-
tator threads were restarted. If the dirty bit has been set again, the
reference count for the overwritten value in the currently live logs
is incremented–being in the new logs, it will be decremented when
the new logs are processed. We note here that it is safe to temporar-
ily overestimate the reference counts. Levanoni and Petrank also
have another algorithm that stops threads one by one, rather than
all at once, but which is more complicated to implement.
We have adapted the simpler algorithm in the following ways.

First, in our adaptation, there is no need for a dedicated collector
thread. When a thread needs a reference count, it simply performs
all the tasks of the collector thread listed above. However, only one
thread at a time may act as the collector thread. Second, there is
no need to stop all threads while the collector thread copies logs.
Rather, in our implementation there are two sets of logs, and two
arrays of dirty bits. Instead of copying logs, the collector thread
arranges(through a simple lock-free algorithm) for each thread to
use the other set of logs and dirty bits, and waits for any pending
updates to complete. At this point the collector thread can proceed
as before.
Levanoni and Petrank also describe how to avoid the problems

that arise when the target architecture does not have a sequentially
consistent memory model. We describe in detail our algorithm and
how these problems are addressed by our implementation in our
technical report [2].

4.4 The C Library
In applying SharC to real C programs, it is necessary to handle
some features of the C language, and the C Library. In particular,
we require pointer arguments to variable argument functions to be
private. This caused no problems when SharC was applied to the
benchmarks in Section 5. Further, we stipulate that C Library calls
require pointer arguments be private. However, SharC also sup-
ports trusted annotations that summarize the read/write behavior of
library calls. When the read/write behavior of a library call is sum-
marized for an argument, the call may accept an actual argument in
any sharing mode except for locked. In particular, for a dynamic
actual, the read/write summary tells how to update the reader/writer
sets for the object, and a readonly actual can be safely passed
when there is a read summary.

4.5 Limitations
SharC has a couple of limitations. First, false race reports may re-
sult from false sharing, and from the use of custom memory alloca-
tors. Since we track races at a 16-byte granularity, races may be re-
ported for two separate objects that are close together, but used in a
non-racy way. To alleviate this problem, SharC ensures that malloc
allocates objects on a 16-byte boundary. If a program’s custom
memory allocator transfers unused memory between threads, or
does not allocate on 16-byte boundaries, SharC may incorrectly re-
port races. In the future, we will provide support for making SharC
understand custom allocators.
Second, our analysis is dynamic, so it will only detect sharing

strategy violations over a limited number of paths, and only for
thread schedules that actually occur on a concrete run of the pro-
gram. The advantage of the dynamic analysis is, of course, that er-

rant program behavior will be detected when it occurs, rather than
at some later time.

5. Evaluation
We applied SharC to 6 multithreaded C programs totaling over
600k lines of code. Two of the programs were over 100k lines.
These programs use threads in a variety of ways: some use threads
for performance, whereas others use threads to hide I/O latency.
Further, one benchmark is a server that spawns a thread for each
client.
We found the following procedure for applying SharC to be ex-

pedient. Minimal changes are made to the source until the inference
stage no longer results in ill-formed types. This involves removing
casts that that incorrectly strip off our type qualifiers. Then, we run
the program and inspect the error reports. These are usually suffi-
cient to tell how data is shared in the program, and we use them
to decide what objects are protected by which locks, and to note
where the sharing mode of objects changes (typically, SharC’s shar-
ing cast suggestions can be applied as is).
The goal of these experiments is to demonstrate that our ap-

proach is practical. In particular, it requires few enough code
changes, and incurs low enough overhead that it could be used
in production systems. We found no serious errors2 in our bench-
marks because our tests only sought to exercise typical runs of the
programs — we did not perform thorough regression testing.
Table 1 summarizes our experience using SharC. The reported

runtimes are averages of 50 runs of each of the benchmarks. Mem-
ory overhead was measured by recording the number of minor
pagefaults3 incurred by each benchmark. All tests were run on a
machine with a dual core 2GHz Intel Xeon processor with 2GB
of memory. A total of 60 annotations, and 122 other code changes
were required for the 600k lines of code. On average, SharC in-
curred a performance overhead of 9.2%, and a memory overhead
of 26.1%.
The pfscan benchmark is a tool that spawns multiple threads

for searching through files. It combines some features of grep and
find. One thread finds all the paths that must be searched, and
an arbitrary number of threads take paths off of a shared queue
protected with a mutex and search files at those paths. Our test
searched for a string in all files in an author’s home directory. We
found that running the test several times allowed all files to be
held in the operating system’s buffer cache, and so we were able
to eliminate file systems effects in measuring the overhead.
The aget benchmark is a download accelerator. It spawns sev-

eral threads that each download pieces of a file. We measured per-
formance by downloading a Linux kernel tarball. The program was
network bound, and so the overhead created by SharC was not mea-
surable.
The pbzip2 benchmark is a parallel implementation of the

block-based bzip2 compression algorithm. The benchmark con-
sisted of using three worker threads to compress a 4MB file. The
pbzip2 benchmark has threads for file I/O, and an arbitrary number
of threads for (de)compressing data blocks, which the file-reader
thread arranges into a shared queue. The functions that perform the
(de)compression assume they have ownership of the blocks, and
so we annotate their arguments as private. One benign race was
found in a flag used to signal that reading from the input file has
finished. At worst, a thread might yield an extra time before exiting.

2 By “serious error” we mean a sharing strategy violation that causes unin-
tended results.
3 The number of minor pagefaults indicates the number of times the oper-
ating system kernel maps a page of the process’s virtual address space to a
physical frame of memory. It is a rough measure of memory usage.

Benchmark Time Pagefaults % dynamic
Name Threads Lines Annots. Changes Orig. SharC Orig. SharC Accesses
pfscan 3 1.1k 8 11 1.84s 12% 21k 0.8% 80.0%
aget 3 1.1k 7 7 n/a n/a 0.4k 30.8% 8.7%
pbzip2 5 10k 10 36 0.83s 11% 10k 1.6% ∼0.0 %
dillo 4 49k 8 8 0.69s 14% 2.6k 78.8% 31.7 %
fftw 3 197k 7 39 44.1s 7% 63k 1.2% 0.2 %
stunnel 3 361k 20 22 0.39s 2% 0.5k 43.5% ∼0.0%

Table 1. Benchmarks for SharC. For each test we show the maximum number of threads running concurrently(Threads), the size of the
benchmark including comments (Lines), the number of annotations we added (Annots.) and other changes required (Changes). We also
report the time and memory overhead caused by SharC along with the proportion of memory accesses to dynamic objects.

The dillo benchmark is a web browser that aims to be small and
fast. We measured the overhead of SharC by starting the browser,
requesting a sequence of 8 URLs, and then closing the browser.
The dillo benchmark uses threads to hide the latency of DNS
lookup. It keeps a shared queue of the outstanding requests. Four
worker threads read requests from the queue and initiate calls to
gethostbyname. Several functions called from the worker threads
assume that they own request data, so the arguments to these func-
tions were annotated private. The memory overhead for dillo is
higher because integers are cast to pointer type, and SharC infers
they need to be reference counted. These bogus pointers are never
dereferenced, but we incur minor pagefaults when their reference
counts are adjusted. We suspect that this issue could be addressed if
the programmer annotates the pointers that only store bogus values.
The fftw benchmark performs 32 random FFT’s as generated by

the benchmarking tool distributed with The Fastest Fourier Trans-
form in the West [12]. The fftw benchmark computes by dividing
arrays among a fixed number of worker threads. Ownership of ar-
rays is transferred to each thread, and then reclaimed when the
threads are finished. The functions that compute over the partial
arrays assume that they own that memory, so it was only necessary
to annotate those arguments as private.
The stunnel benchmark is a tool that allows the encryption of

arbitrary TCP connections. It creates a thread for each client that it
serves. The main thread initializes data for each client thread before
spawning them. There are also global flags and counters, which are
protected by locks. Stunnel uses the OpenSSL library, so it is also
necessary to process it with SharC. Even though OpenSSL is not
concurrent itself, SharC is able to verify that there are no thread-
safety issues with its use by stunnel in our tests. Our experiments
with stunnel involved encrypting three simultaneous connections
to a simple echo server with each client sending and receiving 500
messages.

5.1 Conversion Effort
Our experiments on the programs above did not require extremely
deep understanding. Locks tended to be declared near the objects
they protected, threading-related code tended to be in a file called
“thread.c”, private annotations were made close–both textually
and in the call graph–to thread creation calls, and so forth. As in
Section 2.1’s example, SharC’s error reports were often helpful in
guiding annotation insertion. Also, SharC infers a reasonable de-
fault for omitted annotations. Therefore, we had no insurmount-
able problems in adding the few needed annotations. Time required
to read and annotate relevant code varied between 2 and 4 hours.
Time for reading and annotating larger codes did not grow propor-
tionally because threading-related code tended to be concentrated
in one place. Since the annotation burden is low, we do not believe
that automating the annotation process would have a substantial
benefit.

6. Related Work
The work most closely related to our own are tools that attempt to
find data races in concurrent programs. Whereas SharC attempts to
identify violations of a sharing strategy, race detectors simply look
for unsynchronized access to memory. There are several different
approaches to race detection. We classify the approaches as static,
dynamic, and model-checking.

6.1 Static Race Detection and Model Checking
There has been much work on statically analyzing data races and
atomicity in Java programs [3, 21, 17]. We have used some own-
ership type ideas from these works in our own type system, and
believe that atomicity is an important concern requiring further at-
tention in dynamic analysis of large real-world legacy C programs.
Cyclone [14] allows the programmer to write type annotations

that enable its compiler to statically guarantee race-freedom. The
difficulty in applying Cyclone’s analysis to existing multithreaded
programs lies in translation to a program with Cyclone’s annota-
tions and concurrency primitives. Our system requires annotations,
but they are far less pervasive.
Relay [25], and RacerX [8] are static lockset based analyses

for C code that scale to large real world programs including the
Linux kernel. However, both tools are unsound, and require signif-
icant post-processing of warnings to achieve useful results. Lock-
smith [19], on the other hand, is a sound static race detector for C.
It statically infers the correlation of memory locations to the locks
that protect them. If a shared location is not consistently protected
by the same lock, a race is reported. Locksmith also does a shar-
ing analysis similar to our own as an optimization. Unfortunately,
Locksmith runs out of resources while analyzing larger programs.
Some of these techniques have scaled up to many hundreds of

thousands of lines of code and have uncovered serious problems in
real world software. Further, some of these techniques, especially
the ones for Java, also achieve manageable false positive rates.
For development cultures in which programmers are encouraged
to use the results of static analysis, these techniques are probably
an appropriate choice. However, testing is already widely used, and
so low overhead dynamic analysis will be the least cost path to race
detection for many people.
Sen and Agha [23] perform explicit path model checking of

multithreaded programs by forcing races detected on a concrete run
to permute by altering the thread schedule, and by solving symbolic
constraints to generate inputs that force the program down new
paths. KISS and the work of Henzinger et. al. can also find errors
in concurrent programs with model checking [20, 15].

6.2 Dynamic Race Detection
Eraser [22] popularized the dynamic lockset algorithm for race de-
tection. The goal of the lockset algorithm is to ensure that every
shared location is protected by a lock. Eraser monitors every mem-

ory read and write in the program through binary instrumentation,
and tracks the state of each location in memory. The states that a lo-
cation can inhabit model common idioms such as initialization be-
fore sharing, read-sharing, read-write locking, and so forth. Eraser
is able to analyze large real-world programs, but it incurs a 10x-
30x runtime overhead. Further, the state diagram used to determine
when a race might be occurring may not be an accurate model of
the data sharing protocol in a program. This inaccuracy leads to
false positives.
Improvements to the lockset algorithm use Lamport’s happens-

before relation to track thread-ownership changes. This reduces
false positives due the lockset state diagram failing to model sig-
naling between threads, among other things. Additionally, some dy-
namic race detectors perform preliminary static analysis to improve
performance. Analyses using these improvements have achieved
lower false positive rates and better performance [1, 9, 4]. For Java,
the overhead has been reduced to 13%-42% [5]. Goldilocks inte-
grates race detection into the Java runtime [7]. Racetrack integrates
race detection into the CLR [26], and achieves overhead in the
range 1.07x-3x for .Net languages, with the low end correspond-
ing to non-memory-intensive programs. Using the happens-before
relation and more complicated state diagrams to model additional
data sharing schemes reduces false positives, but our system is the
first to attack the root of the problem by modeling ownership trans-
fer directly.

7. Conclusion
We have presented SharC, the first tool that allows programmers
to specify and verify (through static and dynamic checks) the data
sharing strategy used in multithreaded C programs. We have shown
the promise and practicality of SharC by applying it to over 600k
lines of legacy C code with few annotations and performance over-
head under 10% on average.
SharC can still be improved. In particular, its runtime race

detection should be able to handle a larger number of threads with
low overhead. SharC may also need new sharing modes to better
support existing sharing strategies (e.g., more support for locks),
and to model new sharing strategies (e.g., transactional memory).

7.1 Future Work
Wementioned in Section 4 that for full soundness, SharC must rely
on some external tool to provide type- and memory-safety. For that
reason, we are currently integrating SharC with the Deputy [6], and
Heapsafe [13] tools. Deputy provides for type- and memory-safety,
and Heapsafe provides for deallocation safety (i.e. the absence
of dangling references). It is interesting to note that Deputy and
Heapsafe by themselves are unsound in the presence of sharing
strategy violations, but when combined with SharC they provide
an incremental pathway to type- and memory-safe concurrent C
programs.

References
[1] A, R., S, A., W, L.,  S, S. D. Optimized

run-time race detection and atomicity checking using partial
discovered types. In ASE’05.

[2] A, Z. R., G, D., E, R.,  B, E. SharC:
Checking data sharing strategies for multithreaded C. Tech. Rep.
UCB/EECS-2008-25, EECS Department, University of California,
Berkeley, Mar 2008.

[3] B, C., L, R.,  R, M. Ownership types for safe
programming: preventing data races and deadlocks. In OOPSLA’02,
pp. 211–230.

[4] C, G.-I., F, M., L, C. E., R, K. H.,  S,
A. F. Detecting data races in Cilk programs that use locks. In
SPAA’98, pp. 298–309.

[5] C, J.-D., L, K., L, A., O’C, R., S, V.,
 S, M. Efficient and precise datarace detection for
multithreaded object-oriented programs. In PLDI’02, pp. 258–269.

[6] C, J., H, M., A, Z., G, D.,  N, G.
Dependent types for low-level programming. In ESOP’07.

[7] E, T., Q, S.,  T, S. Goldilocks: a race and
transaction-aware Java runtime. In PLDI’07, pp. 245–255.

[8] E, D.,  A, K. RacerX: effective, static detection of
race conditions and deadlocks. In SOSP’03, pp. 237–252.

[9] F, C.,  F, S. N. Atomizer: a dynamic atomicity
checker for multithreaded programs. In POPL’04, pp. 256–267.

[10] F, J. S., F, M.,  A, A. A theory of type
qualifiers. In PLDI’99, pp. 192–203.

[11] .. Gstreamer: Open source multimedia framework.
http://gstreamer.freedesktop.org/.

[12] F, M. A fast Fourier transform compiler. In PLDI’99, pp. 169–
180.

[13] G, D., E, R.,  B, E. Safe manual memory
management. In ISMM’07 (New York, NY, USA, 2007), ACM,
pp. 2–14.

[14] G, D. Type-safe multithreading in Cyclone.
[15] H, T. A., J, R.,  M, R. Race checking by

context inference. In PLDI’04, pp. 1–13.
[16] L, Y.,  P, E. An on-the-fly reference-counting

garbage collector for Java. ACM Transactions on Programming
Languages and Systems 28, 1 (2006), 1–69.

[17] N, M., A, A.,  W, J. Effective static race detection
for Java. In PLDI’06, pp. 308–319.

[18] N, G. C., C, J., H, M., MP, S., W, W.
CCured: Type-safe retrofitting of legacy software. ACM Transactions
on Programming Languages and Systems 27, 3 (May 2005).

[19] P, P., F, J. S.,  H, M. Locksmith: context-
sensitive correlation analysis for race detection. In PLDI’06, pp. 320–
331.

[20] Q, S.,  W, D. KISS: keep it simple and sequential. In
PLDI’04, pp. 14–24.

[21] S, A., A, R., W, L.,  S, S. D. Automated
type-based analysis of data races and atomicity. In PPoPP’05, pp. 83–
94.

[22] S, S., B, M., N, G., S, P.,  A,
T. Eraser: a dynamic data race detector for multi-threaded programs.
In SOSP’97, pp. 27–37.

[23] S, K.,  A, G. A race-detection and flipping algorithm for
automated testing of multi-threaded programs. In Haifa Verification
Conference (2006), pp. 166–182.

[24] US-CERT. Technical cyber security alerts.
http://www.us-cert.gov/cas/techalerts/index.html.

[25] V, J. W., J, R.,  L, S. RELAY: static race detection
on millions of lines of code. In ESEC-FSE’07, pp. 205–214.

[26] Y, Y., R, T.,  C, W. Racetrack: efficient detection of
data race conditions via adaptive tracking. In SOSP’05, pp. 221–234.

