
Safe Manual Memory Management

David Gay Rob Ennals Eric Brewer
Intel Research Berkeley

{david.e.gay,robert.ennals,eric.a.brewer}@intel.com

Abstract
We present HeapSafe, a tool that uses reference counting to
dynamically verify the soundness of manual memory man-
agement of C programs. HeapSafe relies on a simple ex-
tension to the usual malloc/free memory management API:
delayed free scopes during which otherwise dangling refer-
ences can exist. Porting programs for use with HeapSafe typ-
ically requires little effort (on average 0.6% of lines change),
adds an average 11% time overhead (84% in the worst case),
and increases space usage by an average of 13%. These re-
sults are based on porting over half a million lines of C code,
including perl where we found six previously unknown bugs.

Many existing C programs continue to use unchecked
manual memory management. One reason is that program-
mers fear that moving to garbage collection is too big a risk.
We believe that HeapSafe is a practical way to provide safe
memory management for such programs. Since HeapSafe
checks existing memory management rather than changing
it, programmers need not worry that HeapSafe will intro-
duce new bugs; and, since HeapSafe does not manage mem-
ory itself, programmers can choose to deploy their programs
without HeapSafe if performance is critical (a simple header
file allows HeapSafe programs to compile and run with a
regular C compiler). In contrast, we found that garbage col-
lection, although faster, had much higher space overhead,
and occasionally caused a space-usage explosion that made
the program unusable.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features—Dynamic
Storage Management

General Terms Languages

Keywords Memory Management, Reference Counting, C,
Safety

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ISMM ’07 October 21–22, Montréal, Québec, Canada.
Copyright c© 2007 ACM [to be supplied]. . . $5.00

1. Introduction
Memory management bugs are a significant cause of soft-
ware failures and vulnerabilities in C programs. Although
some C programs have addressed this problem by using
garbage collection [7], a large proportion of C programs con-
tinue to use unchecked manual memory management. Anec-
dotal evidence suggests that concerns about performance
and software engineering issues are the two main factors that
dissuade C programmers from using garbage collection. On
the performance side, programmers believe that garbage col-
lection’s performance overhead is too high for performance-
critical programs, its memory overhead is too high for space-
critical programs, its scaling is not good enough for concur-
rent programs, and its pauses are too long and too unpre-
dictable for real-time programs. On the software engineer-
ing side, using garbage collection has several drawbacks.
First, you abdicate memory management to a complex run-
time system that you do not control. Second, your program
becomes “locked in” to garbage collection and will not work
correctly without it. Finally, applying garbage collection to
existing code has the potential to change behavior and intro-
duce memory leaks.

Although performance issues have been largely solved,
or at least alleviated, in recent garbage-collector designs [32,
33, 7], the software engineering issues still present a signifi-
cant barrier to adopting garbage collection in legacy C code.
This is particularly the case for systems, media, and real-
time code, where programmers often believe they need fine
control over performance; and for mission critical software,
for which far-reaching changes are considered too risky.

An alternative to garbage collection is to check the safety
of a program’s existing memory management. We have de-
signed and implemented HeapSafe, a C-to-C compiler and
runtime system that uses automatic reference counting to
dynamically check that there are no references to an ob-
ject at the point at which it is freed. HeapSafe requires some
small source code changes, and adds some (reasonable) time
and space overhead. Since HeapSafe checks, rather than re-
places, a program’s existing memory management, program-
mers need not worry that it will change the behavior of their
program (but see Section 2.4 for a discussion of corner cases
in which behavior might change) or that their programs will
become dependent on it. Similarly, since HeapSafe does not

void free_loop(struct loop *start) {

struct loop *next, *cur = start;

delayed_free_start(); /* API change */

do {

next = cur->next;

free(cur);

cur = next;

} while(cur != start);

delayed_free_end(); /* API change */

}

Figure 1. While freeing this cyclic list, the next pointer
from the node before start dangles.

introduce unpredictable pauses, and has moderate perfor-
mance and memory overheads, it is practical to use it for
deployed code, as an alternative to a garbage collector.

The key to our approach is a small extension to the stan-
dard “allocate and free” manual memory management API.
This change is the introduction of delayed free scopes within
which deallocations are delayed and references to deallo-
cated objects can exist. Dynamically checking calls to free
has historically been seen as impractical, since real code of-
ten contains benign references to deallocated objects that
are in fact never dereferenced. The insight behind delayed
free scopes is that these benign references are typically short
lived: they are found in local variables that will soon die,
global variables that will soon be overwritten, or in other
parts of the same data structure that will soon be freed. Using
delayed free scopes, the programmer tells the system when
to check that the deallocations are safe, i.e., that no refer-
ences remain to the deallocated objects.

For instance, in the free_loop function of Figure 1 that
frees a circular list, the dangling reference to the first list
element goes away once the last element of the circular list
is freed. The delayed free scope, indicated by the calls to
delayed_free_start and delayed_free_end tells the
system to delay the deallocations and deallocation checks
until the end of free_loop.

HeapSafe has three significant limitations. First, it is not
fully sound (i.e., it can miss or misreport bad frees), mostly
because of limitations of C itself, such as the lack of array
bounds checks (Section 2.6) — a safer base language would
help here. Second, HeapSafe does not yet support multi-
threaded code. We have performed some preliminary work
in this area by applying HeapSafe to the Linux kernel [1],
but have not yet resolved all issues to our satisfaction (Sec-
tion 3.4). Finally, HeapSafe does not detect memory leaks,
as it only checks the soundness of existing frees. HeapSafe
could be extended with a partial leak detector, based on find-
ing unfreed objects with a zero reference count, but this
would fail to detect unreachable cyclic structures.

We have applied our HeapSafe implementation (Sec-
tion 3) to a 558k line codebase (Section 4), includ-
ing all malloc/free-based C programs from SPEC2000

and SPEC2006 [30].1 Porting code to HeapSafe required
changes to between 0% and 2% of source code lines, with a
mean of 0.6%. HeapSafe’s performance is reasonable — on
average 11% slower and using 13% more memory, though
the worst case slowdown is 84% on perl.

HeapSafe is intended to be used as an “always on” dy-
namic correctness checker, rather than a “debug only” bug
finder. The purpose of these experiments was thus to show
that HeapSafe can be easily applied to existing C programs,
rather than to see how many bugs we could find. We ran
these programs on well-tested inputs — to seriously search
for bugs, we would subject these programs to a much wider
variety of inputs. Nevertheless, we found six new bugs in
perl as a result of trying to understand and check perl’s mem-
ory management.

We also compared (Section 4) HeapSafe to the Boehm-
Weiser conservative garbage collector, and found that Heap-
Safe typically has higher time overhead (11% vs 5%), but
lower space overhead (13% vs 85%). Additionally, the vari-
ance of space overhead for garbage collection was far higher,
with some programs above 200% and others failing due to
running out of memory. Furthermore, even though our goal
is to lower HeapSafe’s overhead sufficiently that it can al-
ways be used, a programmer can always chose to run a
HeapSafe program without HeapSafe, using a conventional
C compiler and library. Conversely, a program that runs
fine with a conservative garbage collector may leak mem-
ory when it is not present. Section 5 compares HeapSafe to
related work in more detail.

In summary, this paper makes two significant contribu-
tions. First, we introduce the idea of delayed frees, which
allow programmers to specify points at which deallocation
can effectively be checked. Delayed frees are presented in
HeapSafe using a simple API: delayed free scopes. Second,
we show that by combining delayed free scopes with auto-
matic reference counting, it is practical to check the correct-
ness of explicit memory management in existing code, even
for large complex programs. We believe this result will also
apply to other languages with explicit memory management.

2. HeapSafe
HeapSafe uses reference counting and delayed free scopes to
check the correctness of existing malloc/free calls in single-
threaded C programs. The programmer typically needs to
make a few small modifications to their program to avoid
HeapSafe incorrectly reporting bad frees. Since the intention
of HeapSafe is to check memory management, rather than
change it, these modifications do not change the observable
behavior of the program (modulo the issues discussed in
Section 2.4).

These modifications fall into two categories. First (Sec-
tion 2.1), programmers must ensure that objects are no

1 Except for libquantum, which uses complex numbers which are unsup-
ported by the CIL framework [23] on which HeapSafe is based.

(a) Original code:

void free_exp(struct exp *e) {

free(e->type);

free(e);

}

(b) With explicit nulling:

void free_exp(struct exp *e) {

struct type *tmp = e->type;

e->type = NULL;

free(tmp);

free(e);

}

(c) With ZFREE:

void free_exp(struct exp *e) {

ZFREE(e->type);

free(e);

}

Figure 2. The child object is freed before the parent:
e->type is a short-lived dangling reference.

longer referenced when their deallocation is checked. This
can be ensured by adding delayed free scopes, or by adding
explicit code to null-out dangling references (e.g., in global
variables). Second (Section 2.2), to ensure the accuracy of
reference counting, most programs require some changes to
help HeapSafe locate pointers and pointer writes (e.g., by
replacing calls to memcpy, memset and memmove by type-
aware versions). Altogether, these changes typically affect
less than 1% of source code.

HeapSafe programs are simply C programs written with
an extended memory allocation API. As a result, regular
C programs can be compiled with HeapSafe (Section 2.3),
HeapSafe programs can be compiled by a regular C compiler
with a small header file (Section 2.4), and code compiled by
HeapSafe and a regular C compiler can be linked together,
e.g., when using the standard C library in a HeapSafe pro-
gram (Section 2.5). We end this section with a summary of
all the issues that can cause HeapSafe to miss or misreport
bad frees (Section 2.6).

2.1 Checking Frees
HeapSafe maintains an integer reference count for each
malloc-allocated object, recording the number of pointers
that refer to that object. When the program calls free on
an object, HeapSafe will verify that the reference count is
zero. Unlike conventional reference counting, HeapSafe will
not automatically free objects when their reference count
reaches zero. It is thus necessary for the programmer to free
all objects explicitly, just as they would if HeapSafe was not
being used.

Applying HeapSafe to existing C code typically reports a
number of bad frees, even if the code is correct, because C

programs often keep a pointer to an object after the object is
freed. Such dangling references are usually benign, and exist
purely because it is more convenient to free the object before
removing references to it. For example, a program will often
free an object before freeing a containing object (Figure 2a).

One can often avoid short-lived dangling references by
simply zeroing the remaining reference to the object being
freed (Figure 2b). Since such conversions are awkward for
the programmer and provide an opportunity to introduce
errors, HeapSafe defines a macro, ZFREE that automatically
zeroes the reference (Figure 2c).

It is usually, though not always, safe to replace any call
to free with a call to ZFREE. Dereferencing a freed pointer
is undefined behavior and so problems can only arise if a
program wishes to compare freed pointers, or test a freed
pointer for NULL. Perl contains uses of both these idioms. . .

HeapSafe uses a simple liveness analysis to determine
when a local variable is dead. If a variable does not have
its address taken, and is not used after the call to free then
it need not be zeroed.2

2.1.1 Delayed Frees
Zeroing references is not always practical. For instance,
when freeing a circular list (Figure 1), the programmer
would have to add additional code to make the list non-
circular before starting to free the list. However, as we dis-
cussed in the introduction, the dangling reference from the
last element of the circular list is short-lived: it no longer
exists at the end of free loop.

We can exploit this kind of property by delaying a free
until all dangling references to the freed object have gone
away. More specifically, we want to delay the actual execu-
tion of that free operation and the corresponding reference
count check until such time as any transient references have
gone away.

Our initial approach to delaying frees was to collect ob-
jects into a group, and free the group only after all dangling
references had been removed. While this works, we found
that it often requires many modifications to existing C code,
increases the likelihood of errors and reduces readability.

Instead, HeapSafe provides delayed free scopes, an API
for delayed frees based on a system of nested scopes. The
program calls delayed free start to start a delayed free
scope and calls delayed free end to end it. Within a de-
layed free scope, all calls to free, and their checks, are de-
layed until the end of the scope, at which point all dangling
references should have disappeared. If scopes are nested
then the inner scope is absorbed into the outer scope; frees
will be delayed until the end of the outermost scope. Frees
that occur outside any scope are performed and checked im-
mediately. In the case of Figure 1, we simply wrapped the
body of the free loop function in a delayed free scope.

2 Without this analysis, most frees outside a delayed free scope would be
bad.

Delayed scopes are only practical if the scopes are kept
relatively small. In the extreme case, one could wrap the en-
tire program with a delayed free scope, delaying all frees
until the end of the program and essentially causing all mem-
ory to be leaked. Fortunately, we have found that, in practice,
we can keep delayed free scopes relatively small, typically
causing a negligible impact on the memory footprint of a
program (Section 4.3).

2.1.2 Disabling Reference Counting
In some unusual cases, programs contain frees that are safe,
but where the dangling references cannot be easily found.
For example, perl caches methods with an associated gener-
ation number. If this generation number is different from the
global generation number, then the entry isn’t used. Opera-
tions that might free methods increment the global genera-
tion number, rather than trying to remove all dangling cached
methods. With HeapSafe, all such frees would be reported as
bad frees. Unsurprisingly, perl does not use its own internal
reference counting for these cached methods.

As a workaround, HeapSafe programs can declare point-
ers with the norefcount qualifier to disable all reference
counting operations. This qualifier is also useful when inter-
acting with code not compiled with HeapSafe, as we discuss
further in Section 2.5.

2.2 Finding Pointers
When an object o is freed or overwritten, HeapSafe needs
to know the location of all pointers in o so that it can ad-
just reference counts for referenced objects. HeapSafe also
needs a conservative estimation of the locations containing
pointers when objects are allocated, so that all pointers can
be initialized to NULL.

The correctness of this type information is not essential
for running HeapSafe programs, but incorrect type informa-
tion can lead to inaccurate bad free reports. For instance,
misidentification of an integer with the same bit pattern as
a pointer will lead to an incorrect reference count. This can
cause incorrect bad free reports and, if bad frees are config-
ured to leak (Section 2.3), memory leaks.

To ensure that all pointers are initialized to NULL,
HeapSafe initializes all local pointer variables to NULL,3

HeapSafe’s version of malloc zeroes allocated objects, and
realloc zeroes out the new part of a reallocated object. For
increased performance (zeroing can have a significant per-
formance impact in allocation-intensive programs), Heap-
Safe provides typed allocation functions which only zero out
pointers.

HeapSafe locates pointers by making the following as-
sumptions about C programs: objects and parts of objects
are always written with the correct type, the type passed to
free represents the exact type of the object being freed, and
unions only have their “type” modified when all possible

3 C already ensures that all global variables are so initialized.

pointer fields are NULL. Additionally, HeapSafe assumes
that a freed pointer points to an array of elements extend-
ing until the end of the allocated heap object, or, if the type
is a struct ending in an open array, that the final array field
extends to the end of the allocated heap object. HeapSafe
locates pointers within objects based on their declared type
when possible, but requires that the programmer write an ad-
just function when not. The role of an adjust function is to
find and adjust the reference count of all pointers in a given
object.

Formally, adjust functions have the following signature:

void adjust_X(void *object, int inc, size_t s);

Such a function should find all pointers in object and
adjust the reference counts of the objects they point to by
inc, taking into account the fact that object has type X
and size s. The HeapSafe library contains utility macros to
make adjusting reference counts and looping over all objects
simple.

Common cases requiring an adjust function include
unions containing pointer fields, object-oriented-style code
(using structs A and B, where the fields of A are a prefix of
those of B, and pointers to the structs are cast to each other),
and cases where pointers are encoded as integers.

Because C is not a type-safe language, HeapSafe’s as-
sumptions may be incorrect. HeapSafe gives warnings for
various constructions that are likely to be problematic. First,
HeapSafe warns whenever free is passed a void* or char*
pointer (for historical reasons, many C programs cast point-
ers to void* or char* before freeing them). Second, it re-
ports whenever memcpy, memset and friends are used to
copy types containing pointers — such calls must be re-
placed in HeapSafe by type-aware copy and clear routines.
Finally, HeapSafe warns the user in most cases where adjust
functions are needed.

We believe that combining HeapSafe with a tool designed
to ensure type safety for C, such as Deputy [8], CCured [22],
or Automatic Pool Allocation [10] would reduce the burden
of these changes on the HeapSafe programmer.

2.3 Dealing with Bad Frees
The user decides what HeapSafe should do on bad frees. The
default behavior is to free the object regardless, but log the
error. This ensures that behavior will be the same as without
HeapSafe. The programmer can also opt to have HeapSafe
not free objects whose check fails, which is safer, but risks
introducing space leaks4.

With HeapSafe’s default behavior, existing C code runs
unchanged under HeapSafe, even if reference counts are
wrong. This provides a good first step when porting C code
to HeapSafe, as we discuss further in Section 4.2. Further-
more, this remains true during the porting process: a par-

4 We have considered providing the option of a periodic scan that frees any
such objects if their reference count has subsequently reached zero, but have
not yet implemented this.

tially or incorrectly ported program still functions correctly.
Missing scopes, ZFREEs, or adjust functions (Section 2.2),
can only cause harmless frees to be logged as bad frees or
already-bad frees to be missed.

2.4 Erasure Semantics
One of the goals of HeapSafe is to allow programs written
for HeapSafe to be compiled and run with any C compiler.
All HeapSafe files must #include <heapsafe.h>. When
compiled with a regular C compiler this header file defines
HeapSafe’s API in terms of regular C operations. The only
differences between the resulting program and one compiled
with HeapSafe are:

• HeapSafe detects bad frees: HeapSafe will log a bad
free if the reference count check fails on a call to free.
The programmer can request arbitrary behavior check
failure (Section 2.3).

• Delayed frees hide errors: If a program frees an ob-
ject within a delayed free scope, and then erroneously
accesses the object before the delayed scope has ended
then HeapSafe will hide this error. If the program was
run without HeapSafe then it is possible that the program
would have accessed a newly allocated object. Program-
mers can avoid this issue by using a library that provides
(unchecked) delayed frees for their normal C compiler.

• Performance differences: Programs compiled with
HeapSafe have increases in the memory usage due to
delayed frees and extra space for reference counts (Sec-
tion 4.3), and decreases in performance, due to the over-
head of reference count operations (Section 4.4).

2.5 Mixing HeapSafe and C Code
HeapSafe can only track references within code that it com-
piles. If a pointer is passed to a foreign library that was not
compiled with HeapSafe then HeapSafe will not be aware of
any references that are held by that library.

Unlike conventional reference counting, it is acceptable
for a library to hold its own private references to a refer-
ence counted object. With conventional reference counting,
since objects are freed when their reference count reaches
zero, un-tracked references can cause referenced objects to
be freed. With HeapSafe, un-counted references within a li-
brary can cause false negatives (missing bad free reports) but
not false positives (extra bad free reports).

However, reference counts may become incorrect if the
reference-counted program and the non-reference counting
library overwrite each other’s pointers (e.g., the program
stores a pointer, incrementing its count, and the library over-
writes it, not decrementing the count). The same problem
arises with deallocation: if the program frees an object con-
taining library-written pointers, HeapSafe will decrement
the reference counts for the pointers written by the library.

One workaround for these problems is to declare the
types of pointers written by both the library and the main

program with the norefcount annotation, to disable refer-
ence counting. In the current version of HeapSafe it is up to
the programmer to identify such types, and verify the cor-
rectness of the resulting memory management.

At least for the standard C library, problematic writes by
library code are rare except for the previously mentioned
memcpy, memset and memmmove functions. None of our pro-
grams had problems with reference counting due to use of
any other C library functions.

2.6 Soundness
The soundness of HeapSafe is limited by several factors.
First, HeapSafe uses 8-bit reference counts, so bad frees
of objects with k ≡ 0 mod 256 references references are
missed (Section 3.1.1) — we believe this is very unlikely in
non-malicious code.

Second, HeapSafe does not check for type-safety issues
such as array bound overflows, walking pointers past the
end of arrays, incorrect use of unions and casts, etc, which
can cause or hide memory safety problems. Third, HeapSafe
relies on the programmer to provide precise information on
the location of all pointers and pointer writes in cases where
this information is normally unavailable in C (Section 2.2).
Combining HeapSafe with a tool designed to ensure type
safety for C [8, 22, 10] would resolve these last two issues.

Finally, programmers can disable reference counting, on
a type-by-type (Section 2.1.2) or file-by-file (Section 2.5)
basis. It is then up to them to ensure that this trusted code
does not cause memory safety violations.

3. Implementation
HeapSafe tracks object reference counts by associating a
1-byte reference count with each 8-byte block of memory
(Section 3.1). These reference counts are updated whenever
pointers are written into the heap, or whenever an object con-
taining pointers is freed (Section 3.2). A variant of deferred
reference counting is used to manage stack pointers. The
current version of HeapSafe is designed for single-threaded
code, but can be used for multi-threaded code with some sig-
nificant caveats (Section 3.4).

At present, HeapSafe only checks the correctness of calls
to free. It does not check that there are no references to
stack allocated data when the stack frame is popped. We
believe it should be relatively easy to add such a feature to
HeapSafe, but leave that for future work.

HeapSafe is implemented as a C-to-C translator, built
over the CIL [23] infrastructure. HeapSafe’s output is com-
piled by gcc. HeapSafe’s runtime library is based on Doug
Lea’s malloc/free library v2.8.3.5

3.1 Storing Counts
HeapSafe maintains a reference count table that contains a
reference count for every 8-byte block of memory (Figure 3).

5 http://gee.cs.oswego.edu/dl/html/malloc.html

Figure 3. The Reference Count Table stores a 1-byte refer-
ence count for every 8-byte block in the heap

Placing the reference counts in a separate table rather than
inside the object itself allows HeapSafe to avoid changing
the data representation, and allows HeapSafe to cope with
pointers to the interior of objects, from which it may be
hard to find the start of the object. When an object is freed
HeapSafe sums the reference counts for all the 8-byte blocks
covered by the object. If the counts sum to zero then there
are no references to the object and it can be safely freed.

HeapSafe checks the block reference count sum (rather
than simply checking that all blocks have a zero reference
count) to avoid the need for reference counting operations
on pointer arithmetic operations. For instance, the sequence

p = malloc(16); p += 8; p = NULL;

will leave the reference counts of the first two blocks of
the allocated object at 1 and -1 respectively, but the sum
is still zero. Note that this requires that pointer arithmetic
keep pointers within the same object, as required by the C
standard. Type safety tools for C, such as Deputy [8] already
enforce this restriction. The C standard does allows a pointer
to an object to point to the byte after the end of the object, so
this byte must also be contained in the blocks assigned to that
object. Fortunately, in the case of the Doug Lea allocator,
each allocated object already has a 1-word header, placed at
the end of the previous 8-byte block, so this byte is already
reserved.

The choice of 8-byte blocks is a compromise. Larger
blocks reduce the amount of space needed for the refer-
ence count table, while smaller blocks reduce the amount
of space wasted by requiring all objects actual size to be a
multiple of the block size. We chose 8-bytes partly because
this is the size-granularity used by the Doug Lea allocator,
which HeapSafe is based on. Similarly, the choice of 1-byte
reference counts is a compromise. Smaller reference counts
save space while larger reference counts reduce the chance
of overflow (Section 3.1.1).

To simplify the process of finding the reference count for
a block, HeapSafe allocates a single array with an entry for
every block in the entire address space. For a 32-bit address
space with 1-byte reference counts this is a 512MB table.
Currently, HeapSafe relies on Linux’s lazy page allocation
to allocate physical pages, and thus only pays a space cost

proportional to allocated object size (plus an overhead for
pointers to stack, code and globals). On 64-bit operating sys-
tems, or operating systems without lazy page allocation, the
HeapSafe library should instead explicitly map the neces-
sary reference counting pages when first using a new section
of the address space.

Since the table is direct mapped and we do not check
for overflow when changing a reference (see below), the
reference adjustment macro is very simple:

#define REFCOUNT_ADJUST(x, by) \

if (x) __rcs[(intptr_t)(x) >> BLOCKSHIFT] += by

The test that x is non-null is not necessary, but improves
performance.

3.1.1 Overflowed Counts
HeapSafe does not check for overflow of its reference
counts. This is acceptable as HeapSafe is being used to check
the correctness of non-malicious code with explicit frees: at
free-time, an unreferenced object’s reference count will still
be zero even if overflows occurred, and for referenced ob-
jects it is unlikely that the number of references will be an
exact multiple of 256 when a bad free occurs. Even if the
number of references is a multiple of 256, the only conse-
quence will be a failure to log a bad free. Conventional ref-
erence counting cannot omit this check for overflow, since
allowing a count to roll over to zero could cause referenced
objects to be freed.

To guarantee memory safety, HeapSafe could perform an
explicit (signed) overflow check on every reference count
operation, triggering an appropriate recovery operation. This
would however increase runtime overhead.

3.2 Tracking Counts
HeapSafe’s C-to-C translator augments the original program
with code that keeps track of the number of references to
each allocated heap object. To do this, it must track all
pointer writes. HeapSafe uses a variation on deferred refer-
ence counting [9] to track local variables (which contribute
a significant majority of pointer writes), and updates refer-
ence counts immediately for writes to global variables and
the heap.

For pointer writes, the object pointed to has its ref-
erence count incremented and the overwritten pointer
has its object’s reference count decremented, using the
REFCOUNT ADJUST macro above. For writes of objects con-
taining pointers, HeapSafe calls the adjust function for the
written type before the write to remove references from the
old value, and calls it after the write to add references from
the new value.

When an object is freed, HeapSafe calls the object type’s
adjust function to remove references from the freed object to
the rest of the heap. When freeing a delayed scope, all ob-
jects have their references removed before any object’s refer-

ence count is checked. This is necessary to avoid erroneously
reporting bad frees.

HeapSafe uses deferred reference counting [9] to avoid
reference counting local variables. Conventional deferred
reference counting places an object in a Zero Count Ta-
ble (ZCT) when its reference count reaches zero. To actu-
ally free objects, the stack is scanned and referenced objects
are removed from the ZCT and the other objects are freed.
HeapSafe’s deferred reference counting is similar: local vari-
ables are not reference counted, and at free time the stack is
scanned to check that there are no references to the object to
be freed. The difference is that HeapSafe’s free checks are
explicitly requested by the programmer, occurring at each
free outside a scope6and at the end of delayed free scopes.

Deferred reference counting increases the pause at free
time, but this overhead is small and predictable, as it is a
function of the number of live variables on the call stack.

Our current implementation of HeapSafe generates
portable ANSI-C, and so is not able to do the low-level stack
walk required for truly efficient deferred reference count-
ing. Instead, it maintains a separate shadow stack in which
all local pointer variables are stored, and checks this stack
for references. HeapSafe performs some simple optimisa-
tions (removing adjacent pop/push pairs, hoisting push/pop
out of loops) to increase performance. However, maintain-
ing this shadow stack can still have significant overhead, as
discussed in Section 4.4.1. Previous work has shown that, if
sufficient care is taken with implementation, deferred refer-
ence counting can give very good performance [19].

To reduce the shadow stack overhead, HeapSafe allows
programmers to annotate functions with nofree if the func-
tion never calls free directly or indirectly. Functions anno-
tated with nofree can only call other functions annotated
with nofree. HeapSafe will not bother saving variables on
the shadow stack around calls to nofree functions. This is a
temporary solution, but yields worthwhile performance im-
provements when applied to inner loops.

3.2.1 Setjmp/Longjmp
A significant advantage of deferred reference counting is
that it makes it practical to support setjmp and longjmp
in a C-to-C translation system. In setjmp, we remember the
position on our shadow stack. In longjmp, we restore the
position of the shadow stack before returning to the setjmp
point.

Additionally, setjmp saves, and longjmp restores the
current delayed free scope nesting depth. If the old depth was
non-zero, and the new depth is zero, the delayed frees are
performed at longjmp time, after the shadow stack pointer
is restored.

Local arrays, structures, and variables whose address is
taken are treated in hybrid fashion. If a pointer is written to

6 Batching unscoped frees did not improve performance because stack scan-
ning can be optimised for a single object.

such a stack object then it is reference counted immediately
(since other code may be treating it as a heap object); how-
ever all such stack objects are also recorded in an additional
shadow stack, allowing longjmp to decrement the reference
counts of any referenced objects when the stack objects go
out of scope.

3.3 Delayed Free Scopes
The implementation of delayed free scopes is a straightfor-
ward chunky list of pointer and type pairs of the objects to
be freed. The first element of the chunky list is statically al-
located, subsequent elements are dynamically allocated as
needed and freed when the delayed free scope ends.

If no memory is available for the chunky list, the system
falls back to doing unchecked, immediate frees.

3.4 Multi-threading
There are several problems with HeapSafe’s implementation
in a multi-threaded environment:

• Reference counts are not updated atomically. If two
threads try to manipulate the same reference count at the
same time then only one update may be visible.

• Pointer writes are not atomic. When overwriting a
pointer HeapSafe needs to know what pointer is being
overwritten, so that it can decrement the object. Since the
update is not atomic, another thread could overwrite a
pointer between HeapSafe reading the old value and writ-
ing the new value.

• Summing reference counts is not atomic. When an ob-
ject is freed, HeapSafe checks that the reference counts
for all blocks in the object sum to zero, however this sum-
mation is not done atomically (Section 3.1). It is possible
that another thread might release and create references
to an object while HeapSafe is walking over the refer-
ence count array, causing HeapSafe to conclude incor-
rectly that the object is not referenced.

• Other threads may have deferred references to an
object. When freeing an object, deferred references from
other threads need to be taken into account.

Under the assumption that pointer writes are not sub-
ject to races,7we can address the first three issues with
two small modifications to HeapSafe: increment reference
counts atomically, and perform reference count increments
before decrements. We have successfully used this modi-
fied version of HeapSafe to check memory allocation in the
Linux kernel [1]8, but have not addressed the issues of per-
formance and deferred references from other threads. Previ-
ous work on multi-threaded reference counting [19] leads us
to believe that these problems can be solved.

8 In that paper, HeapSafe is referred to under the name CCount.
8 A static checker tool such as as RacerX [12], or a dynamic race detector
such as Eraser [28], could be used to check for such races.

Source Code Max Heap Usage (MB) Runtime (mins)
Benchmark kLOC Changes S A F N O Orig. HeapS. GC Orig. HeapS. GC alloc/s

SPEC2000:
crafty 21.2 0.25% 2 0 0 47 3 0.88 12.5% 42.6% 1.2 1.8% -0.0% 0.55

gzip (5) 8.6 0.42% 0 18 14 0 4 189 12.5% 39.4% 0.38 2.7% 2.1% 873
parser 11.4 2.1% 52 8 64 51 60 12.9 12.8% 116% 2.3 33.2% 4.4% 5.73M
twolf 20.5 0.37% 14 0 8 0 54 3.4 22.8% 8.5% 2.4 11.7% 4.2% 3.96k

art (2) 1.3 0.00% 0 0 0 0 0 3.5 12.5% 17.7% 0.82 0.30% 2.9% 618
equake 1.5 0.00% 0 0 0 0 0 43.4 12.5% 8.9% 1.4 -2.8% 9.1% 16.3k
ammp 13.5 0.68% 0 0 20 47 25 13.9 12.5% 161% 3.7 3.9% 25.9% 174
mesa 61.7 0.26% 46 0 14 66 35 21.4 12.5% 8.6% 1.8 -2.4% 0.50% 0.57

SPEC2006:
perl (3) 168 1.0% 347 350 63 96 853 290 12.8% 85.2% 3.3 84.1% -0.5% 350k

bzip2 (6) 8.3 0.22% 4 0 5 0 9 414 12.5% 24.2% 2.3 4.4% -0.0% 0.20
mcf 2.7 1.0% 8 0 0 5 14 879 12.5% 0.76% 10.8 8.0% -0.8% 0.01

gobmk (5) 61.2 0.18% 12 0 8 74 14 16.6 12.5% 208% 2.5 19.3% 0.37% 788
hmmer (2) 36.0 1.1% 14 0 364 0 22 8.6 12.5% 286% 10.0 2.0% 1.0% 2.02k

h264ref (3) 51.6 0.78% 28 50 108 115 99 31.4 12.8% 352% 4.3 14.5% 1.5% 203
milc 15.0 0.45% 4 0 0 42 21 702 12.5% Failed 20.3 6.7% Failed 5.4
lbm 1.2 0.17% 2 0 0 0 0 429 12.5% 4.0% 21.7 -0.1% -2.4% <0.01

sphinx3 25.1 0.95% 54 14 154 0 16 41.5 12.2% Failed 18.8 5.0% Failed 23.1k
Misc:

cfrac 4.2 0.36% 4 0 1 2 8 0.46 13.9% 150% 0.18 20.2% 4.7% 5.19M
grobner 13.5 0.57% 0 0 26 32 19 0.36 12.5% 227% 0.19 21.6% 28.8% 5.83M

tile 4.9 0.84% 0 0 35 2 4 0.96 12.5% 22.0% 0.21 0.05% 0.76% 2.20k
espresso 15.3 0.96% 14 0 6 36 90 0.38 12.5% 389% 0.08 21.4% 25.3% 890k

boxed-sim 11.6 0.14% 2 0 1 13 0 0.36 12.7% 100% 0.14 13.6% -0.7% 30.1k
Total 558 607 440 891 628 1350

Geo Mean 0.58% 13.0% 84.7% 11.1% 5.0%

Changes are: S = scopes, A = adjust functions, F = changes to free functions, N = nofree annotations, O = other changes (typically nulling).
Changes are measured in lines of code. gobmk contains 197kloc of C, however 136kloc of this is encoded data.

A benchmark run on n > 1 inputs is marked with (n). Runtime and heap usage figures are geometric averages over all inputs.

Figure 4. Benchmark Statistics

4. Evaluation
To demonstrate the practicality of HeapSafe, we ported 22
programs totaling 558k lines of C code. Most programs
ported in a few hours, with typically less than 1% of lines
needing to be annotated (Section 4.2). HeapSafe increases
code size by an average of 18%. Heap and time overhead
are mostly reasonable: typical heap overhead is 13% (Sec-
tion 4.3) and typical performance overhead is 11% (Sec-
tion 4.4). Due to its complexity and to a lesser extent its
size (168K lines), perl took significantly more porting effort
(three weeks), and slows down substantially (84%). How-
ever, HeapSafe helped us find six previously unknown bugs
in perl.

4.1 Test Setup
Figure 4 summarizes the attributes of the 22 single-threaded
programs we ported to HeapSafe. These programs include
all the malloc/free based C benchmarks from SPEC2000 and
SPEC2006 [30]9 (except libquantum because, as mentioned

9 SPEC CPU is a single-threaded benchmark suite.

before, it uses complex numbers which are unsupported by
CIL) and a few benchmarks from previous memory man-
agement studies [5, 16]. For benchmarks included in both
SPEC2000 and SPEC2006, we used the SPEC2006 version.
These benchmarks vary in size between 1270 lines (art) and
168,000 lines (perl). Some programs are very allocation in-
tensive, as shown by the allocs/s column, including cfrac,
grobner, espresso, parser, and perl. Others perform hardly
any allocation, e.g. mesa, bzip2, mcf, and lbm.

The SPEC benchmarks were run on their reference input,
for the other benchmarks we selected inputs with a reason-
able runtime. Tests were performed on a 2.33GHz Intel R©

Core 2 Duo R© with 2GB of memory.
We compare HeapSafe with the original C code linked

with Doug Lea’s malloc/free implementation v2.8.3 (on
which HeapSafe’s runtime is based) and with the Boehm-
Weiser conservative garbage collector v6.7. Both of these li-
braries are compiled with multi-threading support disabled.
The runtime libraries, the original code and the output from
HeapSafe are compiled with gcc 4.1.2 at the -O3 optimiza-
tion level.

4.2 Porting the Benchmarks
All our benchmarks ran correctly with HeapSafe without
any code changes being required. Code changes were only
necessary in order to prevent HeapSafe logging error reports
about benign frees.

Except for perl, these changes were made relatively eas-
ily. Time taken to port a program varied from a few minutes
(equake, ammp, crafty), to three weeks (perl), with a typical
program taking a few hours. No program required more than
2% of lines to be changed, and most changes were trivial
(e.g. removing casts to void* or converting free to ZFREE).

The typical steps for porting a program to HeapSafe were:

• Modify the makefile so that it calls the debug version of
HeapSafe rather than the standard C compiler;

• Build the project, and note any static warnings HeapSafe
generates about the code;

• Add adjust functions and remove casts to void* and
char* until you are happy with the set of warnings Heap-
Safe produces;

• Run the benchmark on test input, and search for the
causes of the bad frees using HeapSafe’s debug facilities
that search the heap, stack and global variables for object
references;

• Add scopes, ZFREE calls, type safety fixes and addi-
tional zeroing code until the program does not log any
bad frees on its test input;

• In some cases (e.g. perl) it may be necessary to fix bugs
in the original program source code in order to make the
program pass; and

• In some other cases (e.g. espresso) it may be desirable
to modify the code slightly in order to avoid needing to
create an overly large delayed free scope; and

• Finally, improve performance by adding nofree anno-
tations, removing unnecessary memset calls (because
HeapSafe’s malloc zeroes memory), and using typed al-
location (Section 2.2).

Figure 4 summarizes the changes that we made to each
of our benchmarks so they could run on their test input
without logging any errors (perl still had some bad frees, as
discussed below). The changes column shows the proportion
of lines that were changed, the S column shows the number
of lines used to start and end delayed free scopes, the A
column shows the number of lines in hand-written adjust
functions, the F column shows the number of free and
realloc statements that were changed (typically removing
casts or using ZFREE/ZREALLOC), and O represents all
other changes (typically explicitly zeroing variables). The F
changes were usually made very quickly using search and
replace.

The fact that a benchmark runs on its reference input
without logging any bad frees does not mean that it would

not log bad frees on any input. It is likely that more changes
would be necessary for these programs to avoid bad free
warnings on all inputs. For the SPEC benchmarks, we did
ensure that the official “test” and “train” inputs also ran
without bad frees.

Most programs ported without any steps beyond those
outlined above, but twolf, mesa, sphinx3, and, especially,
perl required some other changes. In twolf, we fixed a space
leak that was causing bad frees (the leaked objects referred
to objects that were being freed). In mesa, we modified an
explicit list destruction function to zero out pointers in the
list rather than writing an appropriate adjust function for the
list type. In bzip2 we fixed a logical error that caused a bad
free (but which was not an actual bug). In sphinx3, we added
a field to a data structure to discriminate between an union’s
fields. We describe the changes to perl in more detail below.

After eliminating bad frees, we reordered some frees in
cfrac, parser, twolf, and hmmer to keep scopes smaller, re-
ducing memory usage. Additionally, we replaced some calls
to realloc in hmmer by a free/malloc sequence (the old data
was not reused) to avoid a large space increase: Doug Lea’s
realloc implementation uses the mremap system call to real-
locate large objects at a different virtual address but without
a physical copy — HeapSafe’s realloc cannot do this as it
would be unsound.

Three programs, parser, sphinx3 and perl, used cus-
tom memory allocators for some allocations. In parser and
sphinx3, we disabled this allocator (in both the original and
HeapSafe versions). In perl, we left the custom allocators
(which are type-specific allocators) in place, in part because
perl relies on their existence to execute some destructors at
program exit time. We used some low-level HeapSafe facil-
ities (not described in this paper) to support perl’s custom
allocator . We believe that good support for custom memory
allocators will be necessary in HeapSafe, and leave this for
future work.

4.2.1 Porting Perl
The process of converting a program to HeapSafe can reveal
memory bugs even when the test input does not access any
freed objects: when HeapSafe reports a bad free, the pro-
grammer must investigate the dangling reference and either
add a delayed scope around the free statement, or figure out
when and where to zero out the offending reference. In the
case of perl, we sometimes found instead that there was a
code path where the dangling reference could still be used,
which we confirmed by creating an appropriate test case. We
found five such problems in perl. The sixth perl bug was a
type safety error (accessing an array beyond its bounds) that
prevented us from correctly zeroing out some dangling ref-
erences. These bugs sometimes cause the wrong value to be
returned, or allowed deallocated objects to be modified (be-
cause of perl’s custom allocators, this often simply leads to
another object of the same C type being modified, leading
to incorrect behaviour but not crashes). One of the perl bugs

causes a number of bad free reports on the test input, but
our fix for this bug (which we believe to be correct) causes a
space explosion on another part of the test input.

Much of the porting effort for perl went in to understand-
ing enough of its internals to figure out when and where
to clear dangling references. This was particularly tricky
for regular expressions, and appears to be a problem for
perl authors too: two of our bugs were related to regular
expression handling. Another major porting issue was un-
derstanding perl’s various internal stacks and when to clear
them — sometimes values beyond the stack pointer are still
live. . . We ended up using explicit reference count operations
for pushes and pops of pointers to perl’s “save stack”, for im-
proved performance.

Beyond these changes, and bug fixes for the problems
we discovered, we added a couple of benign leaks to sim-
plify porting, added an “allocated type” field to perl’s op-
codes (perl sometimes changes an opcode’s kind, but we
may be able to remove our additional field with some ex-
tra work), and wrapped calls to perl’s yacc-based parser in
one relatively large delayed free scope (finding dead refer-
ences on yacc’s stack is difficult). We used the norefcount
qualifier in three places: perl’s method cache (see Sec-
tion 2.1.2), perl’s custom memory allocators, and perl’s save
stack (where we used explicit reference counting).

A final comment: most of the early bad frees reports
in perl were not bugs. However, once we had understood
enough of perl’s internals to correctly place scopes and zero
references correctly, many of the remaining bad frees corre-
sponded to actual bugs.

4.3 Space
HeapSafe increases heap usage by a geometric average of
13% (Figure 4, Max Heap Usage columns). 12.5% of this
is due to the reference count table,10 and the rest is due to
delayed free scopes keeping objects around for longer than
otherwise. No program increased its heap usage by more
than 23%. This largest increase (in twolf) was mostly due
to the space needed to track scope contents, accounting for a
8.6% increase in space usage. The only other program where
tracking scopes caused a significant space increase was cfrac
(1.4%).

The heap usage of the Boehm-Weiser [7] garbage collec-
tor is less predictable. The geometric average heap increase
for Boehm-Weiser (GC column) is 85%, but variations are
large. Overhead is below 1% on mcf, but some benchmarks
experience extremely large heap blowups, e.g., above 300%
on h264ref; indeed milc and sphinx ran past the 3GB pro-
cess size limit on Linux and were not able to complete their
test runs. We attempted to use Boehm-Weiser’s special al-
location routines, GC malloc atomic for objects contain-

10 We reserve 512MB of address space for reference counts, but Linux
allocates pages only on the first write, hence the 12.5% overhead. See
Section 3.1.

ing no pointers, and GC malloc ignore off page for ob-
jects which should only be reachable by a pointer to their
first page, but these changes were not sufficient for milc and
sphinx. These special allocation routines did prevent or re-
duce space explosions in ammp, hmmer and h264ref. For
perl, we additionally had to disable interior pointer support
(i.e., only pointers to the start of objects prevent garbage col-
lection). It is not clear if perl would always run correctly un-
der these circumstances.

The Boehm-Weiser garbage collector allows some trade-
off between space and time consumption by modifying the
GC free space divisor variable, which changes the col-
lection rate. Setting this variable to 10 (its default value is 3)
reduces heap overhead to an average of 48%, at the expense
of increasing the runtime overhead to 14%. However, these
figures cover a wide range of outcomes: grobner’s space
overhead drops to 77% and its runtime overhead increases
to 175%, while parser’s heap overhead and runtime are es-
sentially unchanged.

4.4 Runtime
Figure 4 shows the runtime for each of our benchmarks.
Orig. is the original CPU time (system and user) in sec-
onds, as reported by the times system call. HeapS. is the
increase in runtime due to HeapSafe, and GC is the increase
in runtime experienced using the Boehm-Weiser conserva-
tive garbage collector [7]. All figures are the geometric av-
erage of three runs per input.

HeapSafe slows our benchmarks down by a geometric av-
erage of 11%. All benchmarks except perl (which has 84%
overhead) slow down by 33% or less. In Section 4.4.1 below,
we break down the sources of HeapSafe’s overhead for four
benchmarks with significant slowdown: grobner, espresso,
parser and perl. We believe that with more engineering ef-
fort we can improve on these results significantly, since there
are many promising optimizations that we have not imple-
mented.

The Boehm-Weiser collector has significantly better per-
formance, with results ranging from a speedup of 2% (lbm)11

to a slowdown of 29% (grobner) — the mean slowdown
(5%) is not fully comparable with HeapSafe’s as some
benchmarks did not complete. This is not completely sur-
prising since the Boehm-Weiser collector is considerably
more mature and garbage collection is normally considered
to be faster than reference counting. HeapSafe’s advantages
lie not in its performance, but in its predictability, low space
overhead, and the low risks involved in its use.

4.4.1 Sources of Performance Overhead
We break down HeapSafe’s runtime overhead into the fol-
lowing categories:

11 This speedup and ammp’s slowdown are presumably not due to garbage
collection as these programs perform very little memory allocation.

grobner espresso parser perl

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Scan
Free

Stack

Heap

Scopes

Zeroing

Changes
Front end

Figure 5. Breakdown of HeapSafe overhead.

• Front End: Compiling the program with the HeapSafe
front end rather than the normal GCC front end.

• Changes: Effects of the various code changes (zeroing
references, etc) needed to get rid of bad frees.

• Zeroing: Cost of zeroing newly allocated memory
blocks.

• Scopes: Delaying object frees using scoped frees.
• Heap: Updating reference counts to record references

from other heap objects.
• Stack: Maintaining the shadow stack for deferred refer-

ence counting. This overhead would be avoided with bet-
ter compiler integration (Section 3.2).

• Free: Checking the reference count at free time, and re-
moving references to objects pointed to by freed objects.

• Scan: Scanning the shadow stack for deferred references.

Figure 5 shows the proportion of the overhead that can
be attributed to each of these sources for grobner, espresso,
parser and perl, four of the highest overhead benchmarks.
We obtained these numbers by running the benchmarks
with some parts of HeapSafe and its runtime library dis-
abled. Updating reference counts (“Heap”) and freeing ob-
jects (“Free”) are major costs in all four benchmarks. Unsur-
prisingly, grobner, espresso and parser, which have a high al-
location rate (above 2M allocations/s), also have high over-
heads in the “Scan” and/or “Free” costs that are related to
freeing objects.

The “Front End” and “Stack” costs are artifacts of our
implementation of HeapSafe based on C-to-C translation.
Based on Figure 5, we estimate that a native implementation
of HeapSafe would have an overhead of 18% for grobner
and espresso, 29% for parser and 77% for perl. These figures
may be slightly optimistic, as a stack scan of the real stack
may be more expensive than the simple linear scan of our
shadow stack. We also believe that we could apply advanced

static analysis to remove unnecessary reference count up-
dates (the “Heap” cost), reducing HeapSafe’s runtime over-
head.

5. Related Work
Related work can be broadly divided into two categories:
Garbage collectors automatically manage the freeing of ob-
jects, thus preventing bad frees but also causing changes to
program behavior. Free-checkers check for bad calls to free
in unmodified programs, but have less complete checking
and much higher overheads than HeapSafe.

5.1 Automatic Memory Management
HeapSafe has different tradeoffs than garbage collection. In
particular, it is easy to turn on and off (Section 2.4), is very
predictable, and has lower space overhead. All operations in
HeapSafe have a predictable overhead in space and time over
a conventional malloc/free based system. Allocation takes
time proportional to the size of the new object, deallocation
of objects at the end of a delayed free scope takes time
proportional to the sum of the sizes of freed objects and
the number of live variables on the stack. There are no
unpredictable pauses.

Since all memory is freed explicitly by the programmer,
the programmer does not need to worry about unintended
space leaks due to forgotten pointers. The increase in mem-
ory usage due to object retention in delayed free scopes is
typically small, and is user-specified and predictable. Heap-
Safe’s only other increase in heap size is a small constant
factor due to reference counts. In contrast, garbage collec-
tion increases heap usage by retaining objects until the next
collection, and typically requires a significant heap size in-
crease to get good performance. Furthermore, as HeapSafe
does not automatically free objects, it is tolerant of pointers
held by foreign code.

Conversely, by removing the need to explicitly deallocate
objects, garbage collectors simplify programming, avoid
leaks due to forgotten frees, and prevent errors due to incor-
rect frees. In particular, the Boehm-Weiser collector [7] can
be applied to existing C code with nearly no porting effort.

There is a vast literature about garbage collection [32,
17], including incremental garbage collectors that have short
pause times and concurrent garbage collectors that collect
garbage during program execution. Some garbage collec-
tors allow the programmer to retain a degree of control over
memory management. For example the Boehm-Weiser col-
lector [7] allows one to free objects explicitly (and unsafely),
and many collectors allow one to declare explicitly when
garbage collection should take place, mostly avoiding pauses
at inappropriate times.

Reference counting is usually seen as a mechanism for
implementing garbage collection. When the reference count
for an object reaches zero the object is freed automatically.
This is in contrast to HeapSafe, where reference counting is

used only to check explicit memory management, and ob-
jects are never freed automatically. Recent reference count-
ing implementations are very efficient [19]. It is very likely
that HeapSafe could be made more efficient by borrowing
techniques from these efforts.

When reference counting is used for garbage collection, it
is necessary to address the problem that cycles of objects will
have non-zero reference counts even if they are not reachable
from the program roots [4]. HeapSafe does not need to worry
about cycles since all objects are freed explicitly.

Bobrow [6] uses regions to aid in the freeing of cyclic
structures within a conventional reference counting system.
To allow a cyclic structure to be freed, one adds all elements
of the structure to the same region, causing them to share one
reference count, and allowing a reference-counting garbage
collector to free the cycle.

OpenStep [24] (and thus also Cocoa [2]) allows a pro-
grammer to send an object an autorelease message, caus-
ing its reference count to decrement when the current au-
torelease pool is deleted. autorelease is used in a sim-
ilar way to delayed free scopes — to allow short-lived
dangling references to exist. The key difference is that
autorelease requests a delayed decrement of the reference
count, within a “zero means free” reference count system,
while delayed scopes delay the actual free operation, within
a malloc/free API.

5.2 Memory Management Checking
A number of tools exist that check the correctness of existing
C code that uses malloc and free. Electric Fence [26], Pu-
rify [27], Valgrind [29], and DMalloc [31] all check for ac-
cesses to freed memory. Electric fence does this using page-
protection hardware, Purify using code instrumentation, Val-
grind using emulation, and DMalloc by checking memory
for a special bit-pattern that is written to freed blocks. All
three tools impose large performance and/or memory over-
heads12, and all these techniques will fail to detect erro-
neous accesses to memory that has been recycled. In addi-
tion, DMalloc will only detect erroneous access after the
fact, and after the program potentially went wrong. Many
other tools [18, 3, 25, 20] use a combination of changed
pointer representations, out-of-line metadata, and a separate
process for checking C’s memory safety. However, all have
very high performance overhead. These tools are designed as
bug finding tools for use at debug time, rather than as safety
tools that can be enabled in deployed production code.

Several earlier proposals for checking dynamic allocation
rely on the use of special pointer representations. Fischer
and Leblanc [14] stores a unique key in objects and in point-
ers to object. The system checks that the pointer and object
keys match on every dereference. In tombstones [21], point-
ers point to a handle (tombstone) that itself points to the ob-

12 Even DMalloc, one of the most lightweight tools, imposes an overhead
of over 400% on cfrac, even with all tests disabled.

ject. The tombstone is marked as “dead” when the object is
deallocated, allowing detection of dangling pointer accesses.
Tombstones can be recycled using reference counting, or by
using a key system similar to Fischer and Leblanc.

Dhurjati et al [11] ensure memory safety for C programs
by segregating objects into separate “pools” based on their
type (obtained through alias analysis). As a result, even
dangling pointers are guaranteed to always point to an object
of the correct type (albeit not the object the programmer
expects). However, this system disallows most C casts, and
will thus reject many programs.

Splint [13] allows programmers to annotate pointers with
information such as owned, only, dependent, and temp,
and checks that pointers are used consistently with these
annotations. These annotations work well if the programmer
is using their objects in an expected way and has taken time
to annotate their program, but are less useful otherwise.

The RC system [15], earlier work by one of the authors,
applies automatic reference counting to C programs that
use region-based memory management. Like HeapSafe, RC
checks that explicit deallocations are correct. An early ver-
sion of HeapSafe was based on RC, and the annotations to
find pointers (Section 2.2) are based on those of RC. RC’s
performance is better than HeapSafe’s (overheads are below
11%), but RC only applies to programs using regions. Port-
ing malloc/free programs to use regions requires substantial
effort and is often impractical (Gay and Aiken did not mod-
ify any large malloc/free applications to use regions).

6. Conclusions
Although HeapSafe does not offer the performance or sim-
plicity of a conservative garbage collector such as Boehm-
Weiser, we claim it provides a practical way for maintainers
of existing C code to ensure that their memory management
is safe: it does not introduce unpredictable pauses or space-
usage increases, it minimizes the risk of breaking existing
code, and does not lock programs into a third-party tool. Its
overheads for space and time are usually sufficiently low to
leave checking on all of the time, and checking generally
leaves execution behavior unchanged except for logging bad
frees.

There are several issues that we intend to address in future
work:

• Performance: We believe that, given sufficient engineer-
ing effort, we could significantly improve HeapSafe’s
performance.

• Further memory checks: It should be straightforward to
extend HeapSafe to check for dangling pointers to stack
frames, and for memory leaks.

• API for new code: Scoped frees seem to work well for
existing code, but may not be the right API for new code.
Also, many C programs use custom memory allocation.
We plan to expose a low-level HeapSafe API that can be

used to check the safety of custom allocation with little
effort.

• Checked linear references: Reference counts make it
possible to verify dynamically whether one has exclusive
access to an object. We intend to investigate if this can be
used to make linear types, ownership types, and atomic
sections easier to use or implement.

• Concurrency support: HeapSafe only has preliminary
support for multi-threaded code.

HeapSafe is publically available at:

http://memory.intel-research.net

We encourage readers to download HeapSafe and apply
it to their programs.

References
[1] ANDERSON, Z., BREWER, E., CONDIT, J., ENNALS, R.,

GAY, D., HARREN, M., NECULA, G. C., AND ZHOU, F.
Beyond bug-finding: Sound program analysis for Linux. In
HOTOS XI (2007).

[2] APPLE. Cocoa. http://developer.apple.com.

[3] AUSTIN, T. M., AND SOHI, S. E. B. G. S. Efficient
detection of all pointer and array access errors. In PLDI’94.

[4] BACON, D. F., AND RAJAN, V. Concurrent cycle collection
in reference counted systems. In ECOOP’01.

[5] BERGER, E. D. Memory Management for High Performance
Applications. PhD thesis, University of Texas at Austin,
2002.

[6] BOBROW, D. G. Managing re-entrant structures using
reference counts. ACM Transactions on Programming
Languages and Systems 2, 3 (1980).

[7] BOEHM, H., AND WEISER, M. Garbage collection in
an uncooperative environment. Software Practice and
Experience (1988), 807–820.

[8] CONDIT, J., HARREN, M., ANDERSON, Z., GAY, D., AND

NECULA, G. Dependent types for low-level programming.
In ESOP’07.

[9] DEUTSCH, L. P., AND BOBROW, D. G. An efficient,
incremental, automatic garbage collector. Communications
of the ACM 19, 9 (1976).

[10] DHURJATI, D., AND ADVE, V. Backwards-compatible array
bounds checking for C with very low overhead. In ICSE’06.

[11] DHURJATI, D., KOWSHIK, S., ADVE, V., AND LATTNER,
C. Memory safety without garbage collection for embedded
applications. Trans. on Embedded Computing Sys. 4, 1
(2005), 73–111.

[12] ENGLER, D., AND ASHCRAFT, K. RacerX : Effective, static
detection of race conditions and deadlocks. In SOSP’03.

[13] EVANS, D. Static detection of dynamic memory errors. In
PLDI’96.

[14] FISCHER, C. N., AND LEBLANC, R. J. The implementation
of run-time diagnostics in Pascal. IEEE Transactions on
Software Engineering SE-6, 4 (July 1980), 313–319.

[15] GAY, D., AND AIKEN, A. Language support for regions. In
PLDI’01.

[16] JIM, T., MORRISETT, G., GROSSMAN, D., HICKS, M.,
CHENEY, J., AND WANG, Y. Cyclone: A safe dialect of C.
In USENIX Annual Technical Conference (2002).

[17] JONES, R., AND LINS, R. Garbage Collection. Wiley, 1996.

[18] JONES, R. W. M., AND KELLY, P. H. J. Backwards
compatible bounds checking for arrays and pointers in C.
In Automated and Algorithmic Debugging (AADEBUG’97)
(1997).

[19] LEVANONI, Y., AND PETRANK, E. An on-the-fly reference
counting garbage collector for Java. In OOPSLA’01.

[20] LOGINOV, A., YONG, S., HORWITZ, S., AND REPS, T.
Debugging via run-time type checking. In FASE’01.

[21] LOMET, D. B. Making pointers safe in system programming
languages. IEEE Transactions on Software Engineering SE-
11, 1 (Jan. 1985), 87–96.

[22] NECULA, G. C., CONDIT, J., HARREN, M., MCPEAK, S.,
AND WEIMER, W. CCured: Type-safe retrofitting of legacy
software. ACM Transactions on Programming Languages
and Systems 27, 3 (May 2005).

[23] NECULA, G. C., MCPEAK, S., AND WEIMER, W. CIL:
Intermediate language and tools for the analysis of C pro-
grams. In International Conference on Compiler Con-
struction (April 2002), Grenoble, France, pp. 213–228.
http://cil.sourceforge.net/.

[24] NEXT. Openstep. http://www.gnustep.org.

[25] PATIL, H. G., AND FISCHER, C. N. Low-cost, concurrent
checking of pointer and array accesses in C programs.
Software Practice and Experience 27, 12 (Dec. 1997), 87–
110.

[26] PERENS, B. Electric fence. http://perens.com/FreeSoftware/.

[27] RATIONAL SOFTWARE. Purify: Fast detection of memory
leaks and access errors. http://www.rational.com.

[28] SAVAGE, S., BURROWS, M., NELSON, G., AND SOBAL-
VARRO, P. Eraser: A dynamic data race detector for multi-
threaded programs. ACM Transactions on Computer Science
15, 4 (1997).

[29] SEWARD, J., AND NETHERCOTE, N. Using Valgrind to
detect undefined value errors with bit-precision. In USENIX
Annual Technical Conference (2005).

[30] SPEC. SPECCPU 2000 and 2006. http://www.spec.org.

[31] WATSON, G. Dmalloc - debug malloc. http://dmalloc.com.

[32] WILSON, P. R. Uniprocessor garbage collection techniques.
In Proceedings of the International Workshop on Memory
Management (1992).

[33] ZORN, B. The measured cost of conservative garbage
collection. Tech. Rep. CU-CS-573-92, University of
Colorado at Boulder, April 1992.

